Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/32942 |
Resumo: | Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19. |
id |
UNIFEI_ac0d941f83e55dae928d63c3c0b1225c |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/32942 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniquesAplicaciones de la visión por ordenador en la asistencia sanitaria: revisión de la literatura aumentada con técnicas de procesamiento del lenguaje naturalAplicações de visão computacional na saúde: revisão de literatura incrementada com técnicas de processamento de linguagem naturalSistemas de visão computacionalAprendizado profundoDiagnósticoSaúdeMedicina.Computer vision systemsDeep learningDiagnosisHealthMedicine.Sistemas de visión por ordenadorAprendizaje profundoDiagnósticoSaludMedicina.Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19.Los sistemas de visión por ordenador (CVS) han recibido una atención especial por parte de los investigadores por su gran adaptabilidad a diversos contextos, especialmente en el ámbito de la seguridad para el reconocimiento de imágenes y vídeos. Este artículo presenta una revisión de la literatura sobre el uso de la visión por ordenador en la asistencia sanitaria en los últimos cinco años (2017-2021) y presenta las tendencias y el análisis para los primeros seis meses de 2022. Para realizar la búsqueda se utilizaron las bases de datos Science Direct, Scopus, Web of Science, ACM Digital Library e IEEE Xplore. Se recuperaron un total de 2.072 artículos (2017 a 2021) y 492 artículos en 2022 y de ellos, tras la deduplicación, 1.857 trabajos compusieron el corpus 2017-2021 y 465 el corpus 2022. Se utilizaron características de Biblioshiny (paquete Bibliometrix de R) para métricas como las revistas que más publican sobre el tema y se adoptaron técnicas de Procesamiento del Lenguaje Natural para extraer multigramas que generaron nubes de palabras de los resúmenes de los artículos recuperados. Brasil sólo aparece en tres documentos: uno de investigadores de la Universidad Federal de Acre, otro de la Universidad Estatal de Maringá y otro de la Universidad Federal de Santa Catarina, y los tres son revisiones bibliográficas. Los investigadores chinos aparecen como los más productivos en este campo y el aprendizaje profundo es la principal tecnología adoptada para este tipo de estudios. Las enfermedades más evidentemente exploradas en el periodo son el cáncer de mama y el COVID-19.Os sistemas de visão computadorizada (CVS) têm recebido atenção especial dos pesquisadores por sua adaptabilidade a vários contextos, especialmente na área de segurança para reconhecimento de imagem e vídeo. Este artigo apresenta uma revisão bibliográfica sobre o uso da visão computacional na área da saúde nos últimos cinco anos (2017-2021), bem como tendências e análises para os seis primeiros meses de 2022. Os bancos de dados Science Direct, Scopus, Web of Science, ACM Digital Library e IEEE Xplore foram usados para conduzir a pesquisa. Um total de 2.072 artigos foram recuperados (2017 a 2021) e 492 artigos em 2022 e destes, após deduplicação, 1.857 trabalhos compuseram o corpus 2017-2021 e 465 o corpus 2022. Técnicas de Processamento de Linguagem Natural foram adotadas para extração de multigramas que geraram nuvens de palavras dos resumos dos artigos recuperados. Também métricas como periódicos que mais publicam sobre o tema, a partir de funcionalidades do Biblioshiny (pacote Bibliometrix do R). O Brasil aparece apenas em três documentos: um de pesquisadores da Universidade Federal do Acre, um da Universidade Estadual de Maringá e outro da Universidade Federal de Santa Catarina. Os pesquisadores chineses aparecem como os mais produtivos e o aprendizado profundo é a principal tecnologia adotada para este tipo de estudo. As doenças mais evidentemente exploradas no período são câncer de mama e COVID-19.Research, Society and Development2022-07-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3294210.33448/rsd-v11i10.32942Research, Society and Development; Vol. 11 No. 10; e218111032942Research, Society and Development; Vol. 11 Núm. 10; e218111032942Research, Society and Development; v. 11 n. 10; e2181110329422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/32942/27771Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunodahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessConstâncio, Alex SebastiãoCarvalho, Deborah RibeiroTsunoda, Denise Fukumi2022-08-12T22:23:03Zoai:ojs.pkp.sfu.ca:article/32942Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:48:45.352337Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques Aplicaciones de la visión por ordenador en la asistencia sanitaria: revisión de la literatura aumentada con técnicas de procesamiento del lenguaje natural Aplicações de visão computacional na saúde: revisão de literatura incrementada com técnicas de processamento de linguagem natural |
title |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
spellingShingle |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques Constâncio, Alex Sebastião Sistemas de visão computacional Aprendizado profundo Diagnóstico Saúde Medicina. Computer vision systems Deep learning Diagnosis Health Medicine. Sistemas de visión por ordenador Aprendizaje profundo Diagnóstico Salud Medicina. |
title_short |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
title_full |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
title_fullStr |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
title_full_unstemmed |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
title_sort |
Computer vision applications in healthcare: a literature review augmented with natural language processing techniques |
author |
Constâncio, Alex Sebastião |
author_facet |
Constâncio, Alex Sebastião Carvalho, Deborah Ribeiro Tsunoda, Denise Fukumi |
author_role |
author |
author2 |
Carvalho, Deborah Ribeiro Tsunoda, Denise Fukumi |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Constâncio, Alex Sebastião Carvalho, Deborah Ribeiro Tsunoda, Denise Fukumi |
dc.subject.por.fl_str_mv |
Sistemas de visão computacional Aprendizado profundo Diagnóstico Saúde Medicina. Computer vision systems Deep learning Diagnosis Health Medicine. Sistemas de visión por ordenador Aprendizaje profundo Diagnóstico Salud Medicina. |
topic |
Sistemas de visão computacional Aprendizado profundo Diagnóstico Saúde Medicina. Computer vision systems Deep learning Diagnosis Health Medicine. Sistemas de visión por ordenador Aprendizaje profundo Diagnóstico Salud Medicina. |
description |
Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/32942 10.33448/rsd-v11i10.32942 |
url |
https://rsdjournal.org/index.php/rsd/article/view/32942 |
identifier_str_mv |
10.33448/rsd-v11i10.32942 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/32942/27771 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunoda https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunoda https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 10; e218111032942 Research, Society and Development; Vol. 11 Núm. 10; e218111032942 Research, Society and Development; v. 11 n. 10; e218111032942 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052719275442176 |