Computer vision applications in healthcare: a literature review augmented with natural language processing techniques

Detalhes bibliográficos
Autor(a) principal: Constâncio, Alex Sebastião
Data de Publicação: 2022
Outros Autores: Carvalho, Deborah Ribeiro, Tsunoda, Denise Fukumi
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/32942
Resumo: Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19.
id UNIFEI_ac0d941f83e55dae928d63c3c0b1225c
oai_identifier_str oai:ojs.pkp.sfu.ca:article/32942
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Computer vision applications in healthcare: a literature review augmented with natural language processing techniquesAplicaciones de la visión por ordenador en la asistencia sanitaria: revisión de la literatura aumentada con técnicas de procesamiento del lenguaje naturalAplicações de visão computacional na saúde: revisão de literatura incrementada com técnicas de processamento de linguagem naturalSistemas de visão computacionalAprendizado profundoDiagnósticoSaúdeMedicina.Computer vision systemsDeep learningDiagnosisHealthMedicine.Sistemas de visión por ordenadorAprendizaje profundoDiagnósticoSaludMedicina.Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19.Los sistemas de visión por ordenador (CVS) han recibido una atención especial por parte de los investigadores por su gran adaptabilidad a diversos contextos, especialmente en el ámbito de la seguridad para el reconocimiento de imágenes y vídeos. Este artículo presenta una revisión de la literatura sobre el uso de la visión por ordenador en la asistencia sanitaria en los últimos cinco años (2017-2021) y presenta las tendencias y el análisis para los primeros seis meses de 2022. Para realizar la búsqueda se utilizaron las bases de datos Science Direct, Scopus, Web of Science, ACM Digital Library e IEEE Xplore. Se recuperaron un total de 2.072 artículos (2017 a 2021) y 492 artículos en 2022 y de ellos, tras la deduplicación, 1.857 trabajos compusieron el corpus 2017-2021 y 465 el corpus 2022. Se utilizaron características de Biblioshiny (paquete Bibliometrix de R) para métricas como las revistas que más publican sobre el tema y se adoptaron técnicas de Procesamiento del Lenguaje Natural para extraer multigramas que generaron nubes de palabras de los resúmenes de los artículos recuperados. Brasil sólo aparece en tres documentos: uno de investigadores de la Universidad Federal de Acre, otro de la Universidad Estatal de Maringá y otro de la Universidad Federal de Santa Catarina, y los tres son revisiones bibliográficas. Los investigadores chinos aparecen como los más productivos en este campo y el aprendizaje profundo es la principal tecnología adoptada para este tipo de estudios. Las enfermedades más evidentemente exploradas en el periodo son el cáncer de mama y el COVID-19.Os sistemas de visão computadorizada (CVS) têm recebido atenção especial dos pesquisadores por sua adaptabilidade a vários contextos, especialmente na área de segurança para reconhecimento de imagem e vídeo. Este artigo apresenta uma revisão bibliográfica sobre o uso da visão computacional na área da saúde nos últimos cinco anos (2017-2021), bem como tendências e análises para os seis primeiros meses de 2022. Os bancos de dados Science Direct, Scopus, Web of Science, ACM Digital Library e IEEE Xplore foram usados para conduzir a pesquisa. Um total de 2.072 artigos foram recuperados (2017 a 2021) e 492 artigos em 2022 e destes, após deduplicação, 1.857 trabalhos compuseram o corpus 2017-2021 e 465 o corpus 2022. Técnicas de Processamento de Linguagem Natural foram adotadas para extração de multigramas que geraram nuvens de palavras dos resumos dos artigos recuperados. Também métricas como periódicos que mais publicam sobre o tema, a partir de funcionalidades do Biblioshiny (pacote Bibliometrix do R). O Brasil aparece apenas em três documentos: um de pesquisadores da Universidade Federal do Acre, um da Universidade Estadual de Maringá e outro da Universidade Federal de Santa Catarina. Os pesquisadores chineses aparecem como os mais produtivos e o aprendizado profundo é a principal tecnologia adotada para este tipo de estudo. As doenças mais evidentemente exploradas no período são câncer de mama e COVID-19.Research, Society and Development2022-07-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3294210.33448/rsd-v11i10.32942Research, Society and Development; Vol. 11 No. 10; e218111032942Research, Society and Development; Vol. 11 Núm. 10; e218111032942Research, Society and Development; v. 11 n. 10; e2181110329422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/32942/27771Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunodahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessConstâncio, Alex SebastiãoCarvalho, Deborah RibeiroTsunoda, Denise Fukumi2022-08-12T22:23:03Zoai:ojs.pkp.sfu.ca:article/32942Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:48:45.352337Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
Aplicaciones de la visión por ordenador en la asistencia sanitaria: revisión de la literatura aumentada con técnicas de procesamiento del lenguaje natural
Aplicações de visão computacional na saúde: revisão de literatura incrementada com técnicas de processamento de linguagem natural
title Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
spellingShingle Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
Constâncio, Alex Sebastião
Sistemas de visão computacional
Aprendizado profundo
Diagnóstico
Saúde
Medicina.
Computer vision systems
Deep learning
Diagnosis
Health
Medicine.
Sistemas de visión por ordenador
Aprendizaje profundo
Diagnóstico
Salud
Medicina.
title_short Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
title_full Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
title_fullStr Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
title_full_unstemmed Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
title_sort Computer vision applications in healthcare: a literature review augmented with natural language processing techniques
author Constâncio, Alex Sebastião
author_facet Constâncio, Alex Sebastião
Carvalho, Deborah Ribeiro
Tsunoda, Denise Fukumi
author_role author
author2 Carvalho, Deborah Ribeiro
Tsunoda, Denise Fukumi
author2_role author
author
dc.contributor.author.fl_str_mv Constâncio, Alex Sebastião
Carvalho, Deborah Ribeiro
Tsunoda, Denise Fukumi
dc.subject.por.fl_str_mv Sistemas de visão computacional
Aprendizado profundo
Diagnóstico
Saúde
Medicina.
Computer vision systems
Deep learning
Diagnosis
Health
Medicine.
Sistemas de visión por ordenador
Aprendizaje profundo
Diagnóstico
Salud
Medicina.
topic Sistemas de visão computacional
Aprendizado profundo
Diagnóstico
Saúde
Medicina.
Computer vision systems
Deep learning
Diagnosis
Health
Medicine.
Sistemas de visión por ordenador
Aprendizaje profundo
Diagnóstico
Salud
Medicina.
description Computer vision systems (CVS) have received special attention from researchers for their high adaptability to various contexts, especially in the security area for image and video recognition. This paper presents a literature review on the use of computer vision in healthcare over the past five years (2017-2021) and presents trends and analysis for the first six months of 2022. The Science Direct, Scopus, Web of Science, ACM Digital Library, and IEEE Xplore databases were used to conduct the search. A total of 2,072 articles were retrieved (2017 to 2021) and 492 articles in 2022 and of these, after deduplication, 1,857 papers composed the 2017-2021 corpus and 465 the 2022 corpus. Biblioshiny features (R's Bibliometrix package) were used for metrics such as journals that most publish on the topic and Natural Language Processing techniques were adopted to extract multigrams that generated word clouds from the abstracts of the retrieved articles. Brazil appears in only three papers: one by researchers from the Federal University of Acre, one from the State University of Maringa, and another from the Federal University of Santa Catarina, and all three are literature reviews. Chinese researchers appear as the most productive in the field and deep learning is the main technology adopted for this kind of study. The diseases most evidently explored in the period are breast cancer and COVID-19.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/32942
10.33448/rsd-v11i10.32942
url https://rsdjournal.org/index.php/rsd/article/view/32942
identifier_str_mv 10.33448/rsd-v11i10.32942
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/32942/27771
dc.rights.driver.fl_str_mv Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunoda
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Alex Sebastião Constâncio; Deborah Ribeiro Carvalho; Denise Fukumi Tsunoda
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 10; e218111032942
Research, Society and Development; Vol. 11 Núm. 10; e218111032942
Research, Society and Development; v. 11 n. 10; e218111032942
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052719275442176