Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/27542 |
Resumo: | The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference. |
id |
UNIFEI_af920ece0a97ee8cf14e27c6e74f5cf2 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/27542 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of AntarcticaPredicción de atributos pedogeoquímicos del suelo por interpoladores en áreas libres de hielo de la AntártidaPredição de atributos pedogeoquímicos do solo por interpoladores em áreas livres de gelo da AntárticaPredictive covariatesInterpolationDigital mapping.Covariables predictivasInterpolaciónMapeo digital.Covariáveis preditivasInterpolaçãoMapeamento digital.The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference.El objetivo principal de este trabajo es predecir los atributos del suelo en áreas no muestreadas utilizando modelos geoestadísticos, mejorando los parámetros de predicción de los dados seleccionados, utilizando covariables ambientales características de las áreas de hielo antárticas. En este estudio, se recolectaron 58 muestras de suelo de una cuadrícula a una profundidad de 0 a 10 cm en la Península Keller, Isla Rey Jorge, Antártida. Se realizó el análisis químico del suelo y se determinaron los valores de potasio, calcio y magnesio para cada suelo muestreado. En este trabajo se utilizaron interpoladores de kriging simple (SK) y Random Forest para predecir los valores de los atributos del suelo estudiados en áreas no muestreadas. Utilizamos un escáner láser terrestre (TLS) para generar una nube de puntos, para obtener modelos digitales de elevación (DEM) de tamaño de celda de 1, 5, 10, 20 y 30 metros. El uso de covariables no mejoró los parámetros de predicción de bases de suelo en el área de estudio. Los mapas finales no mostraron grandes diferencias basadas en RMSE, principalmente relacionadas con la gran variabilidad espacial de los atributos del suelo en esta región, a pesar de que los mapas temáticos de suelos evidencian diferencia visual. El uso de mapas con mejor resolución obtenidos de TLS no mejora la predicción usando Random Forest para Ca2+. Los interpoladores de predicción del suelo se pueden aplicar para determinar los atributos del suelo en áreas no muestreadas, pero las áreas con alta complejidad necesitan una cuadrícula de muestreo más densa para mejorar el rendimiento de la predicción.Este trabalho tem como objetivo principal predizer atributos do solo em áreas não amostradas utilizando modelos geoestatísticos, através da melhora nos parâmetros de predição dos dados selecionados, utilizando covariáveis ambientais características de áreas de gelo da Antártica. Neste estudo, 58 amostras de solo de uma grade foram coletadas a 0-10 cm de profundidade na Península Keller, Ilha Rei George, Antártica. Foi realizada a análise química do solo e determinados os valores de potássio, cálcio e magnésio para cada solo amostrado. A krigagem simples (SK) e o interpolador Random Forest foram utilizados neste trabalho para predizer os valores dos atributos do solo estudados em áreas não amostradas. Usamos um Terrestrial Laser Scanner (TLS) para gerar uma nuvem de pontos, para obter modelos digitais de elevação (DEMs) de tamanho de célula de 1, 5, 10, 20 e 30 metros. O uso de covariáveis não melhorou os parâmetros de predição de bases do solo na área estudada. Os mapas finais não apresentaram grandes diferenças com base em RMSEs, principalmente relacionadas à grande variabilidade espacial dos atributos do solo nesta região, apesar dos mapas temáticos de solo evidenciarem diferença visual. O uso de mapas com melhor resolução obtidos de TLS não melhora a previsão usando Random Forest para Ca2+. Os interpoladores de previsão de solo podem ser aplicados para determinar os atributos do solo em áreas não amostradas, mas áreas com alta complexidade precisam de uma grade de amostragem mais densa para melhorar o desempenho da previsão.Research, Society and Development2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2754210.33448/rsd-v11i4.27542Research, Society and Development; Vol. 11 No. 4; e51411427542Research, Society and Development; Vol. 11 Núm. 4; e51411427542Research, Society and Development; v. 11 n. 4; e514114275422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/27542/24149Copyright (c) 2022 Adriano Luis Schünemann; André Thomazini; Pedro Henrique Araújo Almeida; Márcio Rocha Francelino; Elpídio Inácio Fernandes Filho; Gérson Rodrigues dos Santos; Mayara Daher de Paula; Carlos Ernesto Gonçalves Reynaud Schaefer; Antonio Batista Pereirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSchünemann, Adriano Luis Thomazini, André Almeida, Pedro Henrique Araújo Francelino, Márcio Rocha Fernandes Filho, Elpídio Inácio Santos, Gérson Rodrigues dos Paula, Mayara Daher de Schaefer, Carlos Ernesto Gonçalves Reynaud Pereira, Antonio Batista2022-03-27T17:17:09Zoai:ojs.pkp.sfu.ca:article/27542Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:15.200771Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica Predicción de atributos pedogeoquímicos del suelo por interpoladores en áreas libres de hielo de la Antártida Predição de atributos pedogeoquímicos do solo por interpoladores em áreas livres de gelo da Antártica |
title |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
spellingShingle |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica Schünemann, Adriano Luis Predictive covariates Interpolation Digital mapping. Covariables predictivas Interpolación Mapeo digital. Covariáveis preditivas Interpolação Mapeamento digital. |
title_short |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
title_full |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
title_fullStr |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
title_full_unstemmed |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
title_sort |
Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica |
author |
Schünemann, Adriano Luis |
author_facet |
Schünemann, Adriano Luis Thomazini, André Almeida, Pedro Henrique Araújo Francelino, Márcio Rocha Fernandes Filho, Elpídio Inácio Santos, Gérson Rodrigues dos Paula, Mayara Daher de Schaefer, Carlos Ernesto Gonçalves Reynaud Pereira, Antonio Batista |
author_role |
author |
author2 |
Thomazini, André Almeida, Pedro Henrique Araújo Francelino, Márcio Rocha Fernandes Filho, Elpídio Inácio Santos, Gérson Rodrigues dos Paula, Mayara Daher de Schaefer, Carlos Ernesto Gonçalves Reynaud Pereira, Antonio Batista |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Schünemann, Adriano Luis Thomazini, André Almeida, Pedro Henrique Araújo Francelino, Márcio Rocha Fernandes Filho, Elpídio Inácio Santos, Gérson Rodrigues dos Paula, Mayara Daher de Schaefer, Carlos Ernesto Gonçalves Reynaud Pereira, Antonio Batista |
dc.subject.por.fl_str_mv |
Predictive covariates Interpolation Digital mapping. Covariables predictivas Interpolación Mapeo digital. Covariáveis preditivas Interpolação Mapeamento digital. |
topic |
Predictive covariates Interpolation Digital mapping. Covariables predictivas Interpolación Mapeo digital. Covariáveis preditivas Interpolação Mapeamento digital. |
description |
The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/27542 10.33448/rsd-v11i4.27542 |
url |
https://rsdjournal.org/index.php/rsd/article/view/27542 |
identifier_str_mv |
10.33448/rsd-v11i4.27542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/27542/24149 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 4; e51411427542 Research, Society and Development; Vol. 11 Núm. 4; e51411427542 Research, Society and Development; v. 11 n. 4; e51411427542 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052707768369152 |