Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica

Detalhes bibliográficos
Autor(a) principal: Schünemann, Adriano Luis
Data de Publicação: 2022
Outros Autores: Thomazini, André, Almeida, Pedro Henrique Araújo, Francelino, Márcio Rocha, Fernandes Filho, Elpídio Inácio, Santos, Gérson Rodrigues dos, Paula, Mayara Daher de, Schaefer, Carlos Ernesto Gonçalves Reynaud, Pereira, Antonio Batista
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/27542
Resumo: The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference.
id UNIFEI_af920ece0a97ee8cf14e27c6e74f5cf2
oai_identifier_str oai:ojs.pkp.sfu.ca:article/27542
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Soil pedogeochemical attributes prediction by interpolators in ice-free areas of AntarcticaPredicción de atributos pedogeoquímicos del suelo por interpoladores en áreas libres de hielo de la AntártidaPredição de atributos pedogeoquímicos do solo por interpoladores em áreas livres de gelo da AntárticaPredictive covariatesInterpolationDigital mapping.Covariables predictivasInterpolaciónMapeo digital.Covariáveis preditivasInterpolaçãoMapeamento digital.The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference.El objetivo principal de este trabajo es predecir los atributos del suelo en áreas no muestreadas utilizando modelos geoestadísticos, mejorando los parámetros de predicción de los dados seleccionados, utilizando covariables ambientales características de las áreas de hielo antárticas. En este estudio, se recolectaron 58 muestras de suelo de una cuadrícula a una profundidad de 0 a 10 cm en la Península Keller, Isla Rey Jorge, Antártida. Se realizó el análisis químico del suelo y se determinaron los valores de potasio, calcio y magnesio para cada suelo muestreado. En este trabajo se utilizaron interpoladores de kriging simple (SK) y Random Forest para predecir los valores de los atributos del suelo estudiados en áreas no muestreadas. Utilizamos un escáner láser terrestre (TLS) para generar una nube de puntos, para obtener modelos digitales de elevación (DEM) de tamaño de celda de 1, 5, 10, 20 y 30 metros. El uso de covariables no mejoró los parámetros de predicción de bases de suelo en el área de estudio. Los mapas finales no mostraron grandes diferencias basadas en RMSE, principalmente relacionadas con la gran variabilidad espacial de los atributos del suelo en esta región, a pesar de que los mapas temáticos de suelos evidencian diferencia visual. El uso de mapas con mejor resolución obtenidos de TLS no mejora la predicción usando Random Forest para Ca2+. Los interpoladores de predicción del suelo se pueden aplicar para determinar los atributos del suelo en áreas no muestreadas, pero las áreas con alta complejidad necesitan una cuadrícula de muestreo más densa para mejorar el rendimiento de la predicción.Este trabalho tem como objetivo principal predizer atributos do solo em áreas não amostradas utilizando modelos geoestatísticos, através da melhora nos parâmetros de predição dos dados selecionados, utilizando covariáveis ambientais características de áreas de gelo da Antártica. Neste estudo, 58 amostras de solo de uma grade foram coletadas a 0-10 cm de profundidade na Península Keller, Ilha Rei George, Antártica. Foi realizada a análise química do solo e determinados os valores de potássio, cálcio e magnésio para cada solo amostrado. A krigagem simples (SK) e o interpolador Random Forest foram utilizados neste trabalho para predizer os valores dos atributos do solo estudados em áreas não amostradas. Usamos um Terrestrial Laser Scanner (TLS) para gerar uma nuvem de pontos, para obter modelos digitais de elevação (DEMs) de tamanho de célula de 1, 5, 10, 20 e 30 metros. O uso de covariáveis não melhorou os parâmetros de predição de bases do solo na área estudada. Os mapas finais não apresentaram grandes diferenças com base em RMSEs, principalmente relacionadas à grande variabilidade espacial dos atributos do solo nesta região, apesar dos mapas temáticos de solo evidenciarem diferença visual. O uso de mapas com melhor resolução obtidos de TLS não melhora a previsão usando Random Forest para Ca2+. Os interpoladores de previsão de solo podem ser aplicados para determinar os atributos do solo em áreas não amostradas, mas áreas com alta complexidade precisam de uma grade de amostragem mais densa para melhorar o desempenho da previsão.Research, Society and Development2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2754210.33448/rsd-v11i4.27542Research, Society and Development; Vol. 11 No. 4; e51411427542Research, Society and Development; Vol. 11 Núm. 4; e51411427542Research, Society and Development; v. 11 n. 4; e514114275422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/27542/24149Copyright (c) 2022 Adriano Luis Schünemann; André Thomazini; Pedro Henrique Araújo Almeida; Márcio Rocha Francelino; Elpídio Inácio Fernandes Filho; Gérson Rodrigues dos Santos; Mayara Daher de Paula; Carlos Ernesto Gonçalves Reynaud Schaefer; Antonio Batista Pereirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSchünemann, Adriano Luis Thomazini, André Almeida, Pedro Henrique Araújo Francelino, Márcio Rocha Fernandes Filho, Elpídio Inácio Santos, Gérson Rodrigues dos Paula, Mayara Daher de Schaefer, Carlos Ernesto Gonçalves Reynaud Pereira, Antonio Batista2022-03-27T17:17:09Zoai:ojs.pkp.sfu.ca:article/27542Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:15.200771Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
Predicción de atributos pedogeoquímicos del suelo por interpoladores en áreas libres de hielo de la Antártida
Predição de atributos pedogeoquímicos do solo por interpoladores em áreas livres de gelo da Antártica
title Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
spellingShingle Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
Schünemann, Adriano Luis
Predictive covariates
Interpolation
Digital mapping.
Covariables predictivas
Interpolación
Mapeo digital.
Covariáveis preditivas
Interpolação
Mapeamento digital.
title_short Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
title_full Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
title_fullStr Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
title_full_unstemmed Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
title_sort Soil pedogeochemical attributes prediction by interpolators in ice-free areas of Antarctica
author Schünemann, Adriano Luis
author_facet Schünemann, Adriano Luis
Thomazini, André
Almeida, Pedro Henrique Araújo
Francelino, Márcio Rocha
Fernandes Filho, Elpídio Inácio
Santos, Gérson Rodrigues dos
Paula, Mayara Daher de
Schaefer, Carlos Ernesto Gonçalves Reynaud
Pereira, Antonio Batista
author_role author
author2 Thomazini, André
Almeida, Pedro Henrique Araújo
Francelino, Márcio Rocha
Fernandes Filho, Elpídio Inácio
Santos, Gérson Rodrigues dos
Paula, Mayara Daher de
Schaefer, Carlos Ernesto Gonçalves Reynaud
Pereira, Antonio Batista
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schünemann, Adriano Luis
Thomazini, André
Almeida, Pedro Henrique Araújo
Francelino, Márcio Rocha
Fernandes Filho, Elpídio Inácio
Santos, Gérson Rodrigues dos
Paula, Mayara Daher de
Schaefer, Carlos Ernesto Gonçalves Reynaud
Pereira, Antonio Batista
dc.subject.por.fl_str_mv Predictive covariates
Interpolation
Digital mapping.
Covariables predictivas
Interpolación
Mapeo digital.
Covariáveis preditivas
Interpolação
Mapeamento digital.
topic Predictive covariates
Interpolation
Digital mapping.
Covariables predictivas
Interpolación
Mapeo digital.
Covariáveis preditivas
Interpolação
Mapeamento digital.
description The main objective of this paper is to predict soil attributes in unsampled areas using geostatistical models, By improving the prediction parameters of selected data, using environmental covariates characteristic of Antarctic ice free areas. In this study, 58 soil samples from a grid were collected at 0-10 cm depth in Keller Peninsula, King George Island, Antarctica. The soil chemical analysis was performed, and the values of potassium, calcium and magnesium were determined for each soil sampled. Simple kriging (SK) and Random Forest interpolator were used in this work to predict the values of the studied soil attributes in non-sampled areas. We used a Terrestrial Laser Scanner (TLS) to generate a cloud of points, to obtain digital elevation models (DEMs) of 1, 5, 10, 20 and 30 meters cell size. The use of covariates did not improve the parameters of soil bases prediction in the studied area. The final maps did not show great differences based on RMSEs, mainly related to the great spatial variability of soil attributes in this region, despite soil thematic maps evidencing visual difference.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/27542
10.33448/rsd-v11i4.27542
url https://rsdjournal.org/index.php/rsd/article/view/27542
identifier_str_mv 10.33448/rsd-v11i4.27542
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/27542/24149
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 4; e51411427542
Research, Society and Development; Vol. 11 Núm. 4; e51411427542
Research, Society and Development; v. 11 n. 4; e51411427542
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052707768369152