Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense

Detalhes bibliográficos
Autor(a) principal: Oliveira, Luã Felipe Souza de
Data de Publicação: 2021
Outros Autores: Cordeiro, Hérica Coelho, Brito, Helieverton Geraldo de, Pinheiro, Ana Cecília Barbosa, Santos, Marcos Antonio Barros dos, Bitencourt, Heriberto Rodrigues, Figueiredo, Antonio Florêncio de, Araújo, Josué de Jesus Oliveira, Gil, Fábio dos Santos, Farias, Márcio de Souza, Barbosa, Jardel Pinto, Pinheiro, José Ciríaco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/20207
Resumo: Molecular electrostatic potential (MEP) and pattern recognition (PR) were used to draw potentially active pentamidine derivatives against Trypanosome brucei rhodesiense (T. b. rhodesiense). PR models: Principal Component Analysis, PCA model; Hierarchical Cluster Analysis, HCA model; K-Nearest Neighbor, KNN model; Soft Independent Modeling of Class Analogy, SIMCA model; and Stepwise Discriminant Analysis, SDA model, were built by reducing the dimensionality of a data matrix to twenty-eight pentamidine derivatives and allowed the compounds to be classified into two classes: more active and less active, according to their degrees of activity against T. b. rhodesiense. The study outlined that the properties HOMO (highest occupied molecular orbital) energy, VOL (molecular volume), and ASA_P (water accessible surface area of all polar (½qi½³0. 2) atoms) are the most relevant for the construction of the models. The key structural features required for biological activity investigated through MEP were used as guidelines in the design of thirteen new compounds, which were evaluated by PR models as more active or less active against T. b. rhodesiense. The application of PR models indicated nine promising compounds (29, 30, 31, 32, 33, 36, 37, 39, and 40) for synthesis and biological assays.
id UNIFEI_b5babf91ce6e82e0cc58a06262e3eeea
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20207
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiensePotencial electrostático molecular y modelos de reconocimiento de patrones para diseñar derivados de pentamidina potencialmente activos contra Trypanosoma brucei rhodesiensePotencial eletrostático molecular e modelos de reconhecimento de padrões para desenhar derivados da pentamidina potencialmente ativos contra Trypanosoma brucei rhodesienseMolecular electrostatic potentialPattern recognition modelsInvestigation of pentamidine derivativesDesign of pentamidine derivatives.Potencial electrostático molecularModelos de reconocimiento de patronesInvestigación de derivados de pentamidinaDiseño de derivados de pentamidina.Potencial eletrostático molecularModelos de reconhecimento de padrõesInvestigação de derivados da pentamidinaDesenho de derivados da pentamidina.Molecular electrostatic potential (MEP) and pattern recognition (PR) were used to draw potentially active pentamidine derivatives against Trypanosome brucei rhodesiense (T. b. rhodesiense). PR models: Principal Component Analysis, PCA model; Hierarchical Cluster Analysis, HCA model; K-Nearest Neighbor, KNN model; Soft Independent Modeling of Class Analogy, SIMCA model; and Stepwise Discriminant Analysis, SDA model, were built by reducing the dimensionality of a data matrix to twenty-eight pentamidine derivatives and allowed the compounds to be classified into two classes: more active and less active, according to their degrees of activity against T. b. rhodesiense. The study outlined that the properties HOMO (highest occupied molecular orbital) energy, VOL (molecular volume), and ASA_P (water accessible surface area of all polar (½qi½³0. 2) atoms) are the most relevant for the construction of the models. The key structural features required for biological activity investigated through MEP were used as guidelines in the design of thirteen new compounds, which were evaluated by PR models as more active or less active against T. b. rhodesiense. The application of PR models indicated nine promising compounds (29, 30, 31, 32, 33, 36, 37, 39, and 40) for synthesis and biological assays.El potencial electrostático molecular (MEP) y el reconocimiento de patrones (RP) se utilizaron para diseñar derivados de pentamidina potencialmente activos contra Trypanosome brucei rhodesiense (T. b. rhodesiense). Modelos RP: Análisis de componentes principales, modelo PCA; Análisis de conglomerados por métodos jerárquicos, modelo HCA; Vecinos más cercanos K-th, modelo KNN; Modelado de Analogía de Clase Independiente Suave, modelo SIMCA; y Análisis discriminante de pasos, modelo SDA, se construyeron reduciendo la dimensionalidad de una matriz de datos a veintiocho derivados de pentamidina y permitieron clasificar los compuestos en dos clases: más activos y menos activos, según su grado de actividad contra T. B. rhodesense. El estudio mostró que las propiedades de energía HOMO (orbital molecular ocupado más alto), VOL (volumen molecular) y ASA_P (área de superficie accesible al agua de todos los átomos polares) (½qi½³ 0,2) son las más relevantes para la construcción de modelos. Las principales características estructurales necesarias para la actividad biológica investigada mediante el MEP se utilizaron como pautas en el diseño de trece nuevos compuestos, que fueron evaluados por los modelos PR como más activos o menos activos frente a T. b. rodesiense. La aplicación de modelos RP indicó nueve compuestos prometedores (29, 30, 31, 32, 33, 36, 37, 39 y 40) para síntesis y ensayos biológicos.Potencial eletrostático molecular (MEP) e reconhecimento de padrão (RP) foram usadospara desenhar derivados da pentamidina potencialmente ativos contra Trypanosome brucei rhodesiense (T. b. rhodesiense). Modelos de RP: Análise de Componentes Principais, Modelo PCA; Análise de Agrupamento por Métodos Hieráquicos, Modelo HCA; K-ésimos Vizinhos mais Próximos, Modelo KNN; Modelagem Independente Suave de Analogia de Classe, Modelo SIMCA; e Análise de Discriminante por Etapas, Modelo SDA, foram construídos reduzindo a dimensionalidade de uma matriz de dados para vinte e oito derivativos de pentamidina e permitiram que os compostos fossem classificados em duas classes: mais ativos e menos ativos, de acordo com seus graus de atividade contra T. b. rhodesiense. O estudo mostrou que as propriedades energia do HOMO (orbital molecular ocupado mais alto), VOL (volume molecular) e ASA_P (área de superfície acessível à água de todos os átomos polares (½qi½³ 0,2) são as mais relevantes para a construção dos modelos. As principais características estruturais necessárias para a atividade biológica investigada através do MEP foram usadas como diretrizes no desenho de treze novos compostos, que foram avaliados pelos modelos de RP como mais ativos ou menos ativos contra T. b. rhodesiense. A aplicação dos modelos de RP indicou nove compostos promissores (29, 30, 31, 32, 33, 36, 37, 39 e 40) para síntese e ensaios biológicos.Research, Society and Development2021-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2020710.33448/rsd-v10i12.20207Research, Society and Development; Vol. 10 No. 12; e261101220207Research, Society and Development; Vol. 10 Núm. 12; e261101220207Research, Society and Development; v. 10 n. 12; e2611012202072525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/20207/18204Copyright (c) 2021 Luã Felipe Souza de Oliveira; Hérica Coelho Cordeiro; Helieverton Geraldo de Brito; Ana Cecília Barbosa Pinheiro; Marcos Antonio Barros dos Santos; Heriberto Rodrigues Bitencourt; Antonio Florêncio de Figueiredo; Josué de Jesus Oliveira Araújo; Fábio dos Santos Gil; Márcio de Souza Farias; Jardel Pinto Barbosa; José Ciríaco Pinheirohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira, Luã Felipe Souza de Cordeiro, Hérica Coelho Brito, Helieverton Geraldo de Pinheiro, Ana Cecília Barbosa Santos, Marcos Antonio Barros dos Bitencourt, Heriberto RodriguesFigueiredo, Antonio Florêncio de Araújo, Josué de Jesus Oliveira Gil, Fábio dos Santos Farias, Márcio de Souza Barbosa, Jardel Pinto Pinheiro, José Ciríaco2021-11-14T20:26:51Zoai:ojs.pkp.sfu.ca:article/20207Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:39:55.363897Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
Potencial electrostático molecular y modelos de reconocimiento de patrones para diseñar derivados de pentamidina potencialmente activos contra Trypanosoma brucei rhodesiense
Potencial eletrostático molecular e modelos de reconhecimento de padrões para desenhar derivados da pentamidina potencialmente ativos contra Trypanosoma brucei rhodesiense
title Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
spellingShingle Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
Oliveira, Luã Felipe Souza de
Molecular electrostatic potential
Pattern recognition models
Investigation of pentamidine derivatives
Design of pentamidine derivatives.
Potencial electrostático molecular
Modelos de reconocimiento de patrones
Investigación de derivados de pentamidina
Diseño de derivados de pentamidina.
Potencial eletrostático molecular
Modelos de reconhecimento de padrões
Investigação de derivados da pentamidina
Desenho de derivados da pentamidina.
title_short Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
title_full Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
title_fullStr Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
title_full_unstemmed Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
title_sort Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense
author Oliveira, Luã Felipe Souza de
author_facet Oliveira, Luã Felipe Souza de
Cordeiro, Hérica Coelho
Brito, Helieverton Geraldo de
Pinheiro, Ana Cecília Barbosa
Santos, Marcos Antonio Barros dos
Bitencourt, Heriberto Rodrigues
Figueiredo, Antonio Florêncio de
Araújo, Josué de Jesus Oliveira
Gil, Fábio dos Santos
Farias, Márcio de Souza
Barbosa, Jardel Pinto
Pinheiro, José Ciríaco
author_role author
author2 Cordeiro, Hérica Coelho
Brito, Helieverton Geraldo de
Pinheiro, Ana Cecília Barbosa
Santos, Marcos Antonio Barros dos
Bitencourt, Heriberto Rodrigues
Figueiredo, Antonio Florêncio de
Araújo, Josué de Jesus Oliveira
Gil, Fábio dos Santos
Farias, Márcio de Souza
Barbosa, Jardel Pinto
Pinheiro, José Ciríaco
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Oliveira, Luã Felipe Souza de
Cordeiro, Hérica Coelho
Brito, Helieverton Geraldo de
Pinheiro, Ana Cecília Barbosa
Santos, Marcos Antonio Barros dos
Bitencourt, Heriberto Rodrigues
Figueiredo, Antonio Florêncio de
Araújo, Josué de Jesus Oliveira
Gil, Fábio dos Santos
Farias, Márcio de Souza
Barbosa, Jardel Pinto
Pinheiro, José Ciríaco
dc.subject.por.fl_str_mv Molecular electrostatic potential
Pattern recognition models
Investigation of pentamidine derivatives
Design of pentamidine derivatives.
Potencial electrostático molecular
Modelos de reconocimiento de patrones
Investigación de derivados de pentamidina
Diseño de derivados de pentamidina.
Potencial eletrostático molecular
Modelos de reconhecimento de padrões
Investigação de derivados da pentamidina
Desenho de derivados da pentamidina.
topic Molecular electrostatic potential
Pattern recognition models
Investigation of pentamidine derivatives
Design of pentamidine derivatives.
Potencial electrostático molecular
Modelos de reconocimiento de patrones
Investigación de derivados de pentamidina
Diseño de derivados de pentamidina.
Potencial eletrostático molecular
Modelos de reconhecimento de padrões
Investigação de derivados da pentamidina
Desenho de derivados da pentamidina.
description Molecular electrostatic potential (MEP) and pattern recognition (PR) were used to draw potentially active pentamidine derivatives against Trypanosome brucei rhodesiense (T. b. rhodesiense). PR models: Principal Component Analysis, PCA model; Hierarchical Cluster Analysis, HCA model; K-Nearest Neighbor, KNN model; Soft Independent Modeling of Class Analogy, SIMCA model; and Stepwise Discriminant Analysis, SDA model, were built by reducing the dimensionality of a data matrix to twenty-eight pentamidine derivatives and allowed the compounds to be classified into two classes: more active and less active, according to their degrees of activity against T. b. rhodesiense. The study outlined that the properties HOMO (highest occupied molecular orbital) energy, VOL (molecular volume), and ASA_P (water accessible surface area of all polar (½qi½³0. 2) atoms) are the most relevant for the construction of the models. The key structural features required for biological activity investigated through MEP were used as guidelines in the design of thirteen new compounds, which were evaluated by PR models as more active or less active against T. b. rhodesiense. The application of PR models indicated nine promising compounds (29, 30, 31, 32, 33, 36, 37, 39, and 40) for synthesis and biological assays.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-19
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20207
10.33448/rsd-v10i12.20207
url https://rsdjournal.org/index.php/rsd/article/view/20207
identifier_str_mv 10.33448/rsd-v10i12.20207
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20207/18204
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 12; e261101220207
Research, Society and Development; Vol. 10 Núm. 12; e261101220207
Research, Society and Development; v. 10 n. 12; e261101220207
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052689689870336