Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/7536 |
Resumo: | The present research aimed to evaluate the genetic divergence in 34 sorghum biomass genotypes via agronomic and physicochemical characters. The design used was randomized blocks with three replications. The agronomic and physical-chemical characteristics evaluated were: days for flowering, number of stems, plant height, number of leaves, green mass production, dry mass production, determination of total ash, determination of volatile content, insoluble lignin and determination of fixed carbon content. The data were submitted to analysis of variance and then, to estimate divergence, the generalized Mahalanobis distance was used as a measure of dissimilarity. Based on this matrix, the methods of Tocher's optimization clusters and the Hierarchical method of Average Grouping Between Groups (UPGMA) were used, and analysis of canonical variables, and the projection based on the first two canonical variables arranged in two-dimensional space. Singh criterion was also used to quantify the relative contribution of these characteristics to genetic divergence. The evaluated genotypes showed significant differences for all the evaluated characteristics. The combination between the 201429B001 and 201429B028 (394.98) genotype pairs was the most divergent and the combination between the 201429B015 and 201429B031 (6.31) genotypes was the most similar. The grouping generated by the Tocher Optimization method, hierarchical UPGMA and graphical dispersion showed similarity in the grouping of genotypes. The first two canonical variables were sufficient to explain about 81.78% of the total variation observed. The results showed a wide genetic diversity among the 34 genotypes of sorghum biomass. |
id |
UNIFEI_b7aeea30a1162bc19af7774453d7617c |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/7536 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical charactersDivergencia genética en genotipos de biomasa sorgo a través de caracteres agronómicos y físico-químicosDivergência genética em genótipos de sorgo biomassa via caracteres agronômicos e físico-químicosSorghum bicolor (L.) MoenchAnálise multivariadaMelhoramento genético.Sorghum bicolor (L.) MoenchAnalisis multivariableMejora genética. Sorghum bicolor (L.) MoenchMultivariate analysisGenetic breeding.The present research aimed to evaluate the genetic divergence in 34 sorghum biomass genotypes via agronomic and physicochemical characters. The design used was randomized blocks with three replications. The agronomic and physical-chemical characteristics evaluated were: days for flowering, number of stems, plant height, number of leaves, green mass production, dry mass production, determination of total ash, determination of volatile content, insoluble lignin and determination of fixed carbon content. The data were submitted to analysis of variance and then, to estimate divergence, the generalized Mahalanobis distance was used as a measure of dissimilarity. Based on this matrix, the methods of Tocher's optimization clusters and the Hierarchical method of Average Grouping Between Groups (UPGMA) were used, and analysis of canonical variables, and the projection based on the first two canonical variables arranged in two-dimensional space. Singh criterion was also used to quantify the relative contribution of these characteristics to genetic divergence. The evaluated genotypes showed significant differences for all the evaluated characteristics. The combination between the 201429B001 and 201429B028 (394.98) genotype pairs was the most divergent and the combination between the 201429B015 and 201429B031 (6.31) genotypes was the most similar. The grouping generated by the Tocher Optimization method, hierarchical UPGMA and graphical dispersion showed similarity in the grouping of genotypes. The first two canonical variables were sufficient to explain about 81.78% of the total variation observed. The results showed a wide genetic diversity among the 34 genotypes of sorghum biomass.Esta investigación tuvo como objetivo evaluar la divergencia genética en 34 genotipos de biomasa de sorgo mediante caracteres agronómicos y fisicoquímicos. El diseño utilizado fue de bloques al azar con tres repeticiones. Las características agronómicas y físico-químicas evaluadas fueron: días de floración, número de tallos, altura de la planta, número de hojas, producción en masa verde, producción en masa seca, determinación de cenizas totales, determinación de contenido volátil, lignina insoluble y determinación del contenido de carbono fijo. Los datos se sometieron a análisis de varianza y luego, para estimar la divergencia, se utilizó la distancia de Mahalanobis generalizada como medida de disimilitud. A partir de esta matriz, se utilizaron los métodos de optimización de clusters de Tocher y el método Jerárquico de Agrupación Promedio entre Grupos (UPGMA) y el análisis de variables canónicas, y la proyección a partir de las dos primeras variables canónicas ordenadas en un espacio bidimensional. También se utilizó el criterio de Singh para cuantificar la contribución relativa de estas características a la divergencia genética. Los genotipos evaluados mostraron diferencias significativas para todas las características evaluadas. La combinación entre los pares de genotipos 201429B001 y 201429B028 (394.98) fue la más divergente y la combinación entre los genotipos 201429B015 y 201429B031 (6.31) fue la más similar. El agrupamiento generado por el método de Optimización de Tocher, UPGMA jerárquico y dispersión gráfica mostró similitud en el agrupamiento de genotipos. Las dos primeras variables canónicas fueron suficientes para explicar alrededor del 81,78 % de la variación total observada. Los resultados mostraron una amplia diversidad genética entre los 34 genotipos de biomasa de sorgo.A presente pesquisa teve como objetivo avaliar a divergência genética em 34 genótipos de sorgo biomassa via caracteres agronômicos e físico-químicos. O delineamento utilizado foi de blocos casualizados com três repetições. As características agronômicas e físico-químicas avaliadas foram: dias para florescimento, número de colmos, altura da planta, número de folhas, produção de massa verde, produção de massa seca, determinação de cinzas totais, determinação do teor de voláteis, lignina insolúvel e determinação teor de carbono fixo. Os dados foram submetidos à análise de variância e em seguida, para estimar divergência foi utilizada como medida de dissimilaridade a distância generalizada de Mahalanobis. Com base nesta matriz, foram empregados os métodos de agrupamentos de otimização de Tocher e método Hierárquico de Agrupamento Médio Entre Grupos (UPGMA), e análises de variáveis canônicas, e a projeção com base nas duas primeiras variáveis canônicas dispostas no espaço bidimensional. Utilizou-se, também, o critério de Singh para quantificar a contribuição relativa dessas características na divergência genética. Os genótipos avaliados apresentaram diferenças significativas para as todas as características avaliadas. A combinação entre os pares de genótipos 201429B001 e 201429B028 (394.98) foi a mais divergente e a combinação entre os genótipos 201429B015 e 201429B031 (6.31) a mais similar. O agrupamento gerado pelo método de Otimização de Tocher, hierárquico UPGMA e dispersão gráfica demostraram semelhança no agrupamento dos genótipos. As duas primeiras variáveis canônicas foram suficientes para explicar cerca de 81,78 % da variação total observada. Os resultados demostraram ampla diversidade genética entre os 34 genótipos de sorgo biomassa.Research, Society and Development2020-08-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/753610.33448/rsd-v9i9.7536Research, Society and Development; Vol. 9 No. 9; e552997536Research, Society and Development; Vol. 9 Núm. 9; e552997536Research, Society and Development; v. 9 n. 9; e5529975362525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/7536/6883Copyright (c) 2020 Taiana Paula Streck Vendruscolo; Valvenarg Pereira da Silva; Rafhael Felipin-Azevedo; Raiane Scandiane da Silva; Marcilene Alves de Souza Castrillon; Carla Lima Corrêa; Flávio Dessaune Tardin; Marco Antonio Aparecido Barellihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessVendruscolo, Taiana Paula Streck Silva, Valvenarg Pereira da Felipin-Azevedo, Rafhael Silva, Raiane Scandiane da Castrillon, Marcilene Alves de Souza Corrêa, Carla Lima Tardin, Flávio Dessaune Barelli, Marco Antonio Aparecido 2020-09-18T01:42:11Zoai:ojs.pkp.sfu.ca:article/7536Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:30:13.894938Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters Divergencia genética en genotipos de biomasa sorgo a través de caracteres agronómicos y físico-químicos Divergência genética em genótipos de sorgo biomassa via caracteres agronômicos e físico-químicos |
title |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
spellingShingle |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters Vendruscolo, Taiana Paula Streck Sorghum bicolor (L.) Moench Análise multivariada Melhoramento genético. Sorghum bicolor (L.) Moench Analisis multivariable Mejora genética. Sorghum bicolor (L.) Moench Multivariate analysis Genetic breeding. |
title_short |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
title_full |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
title_fullStr |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
title_full_unstemmed |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
title_sort |
Genetic divergence in biomass sorghum genotypes through agronomic and physical-chemical characters |
author |
Vendruscolo, Taiana Paula Streck |
author_facet |
Vendruscolo, Taiana Paula Streck Silva, Valvenarg Pereira da Felipin-Azevedo, Rafhael Silva, Raiane Scandiane da Castrillon, Marcilene Alves de Souza Corrêa, Carla Lima Tardin, Flávio Dessaune Barelli, Marco Antonio Aparecido |
author_role |
author |
author2 |
Silva, Valvenarg Pereira da Felipin-Azevedo, Rafhael Silva, Raiane Scandiane da Castrillon, Marcilene Alves de Souza Corrêa, Carla Lima Tardin, Flávio Dessaune Barelli, Marco Antonio Aparecido |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Vendruscolo, Taiana Paula Streck Silva, Valvenarg Pereira da Felipin-Azevedo, Rafhael Silva, Raiane Scandiane da Castrillon, Marcilene Alves de Souza Corrêa, Carla Lima Tardin, Flávio Dessaune Barelli, Marco Antonio Aparecido |
dc.subject.por.fl_str_mv |
Sorghum bicolor (L.) Moench Análise multivariada Melhoramento genético. Sorghum bicolor (L.) Moench Analisis multivariable Mejora genética. Sorghum bicolor (L.) Moench Multivariate analysis Genetic breeding. |
topic |
Sorghum bicolor (L.) Moench Análise multivariada Melhoramento genético. Sorghum bicolor (L.) Moench Analisis multivariable Mejora genética. Sorghum bicolor (L.) Moench Multivariate analysis Genetic breeding. |
description |
The present research aimed to evaluate the genetic divergence in 34 sorghum biomass genotypes via agronomic and physicochemical characters. The design used was randomized blocks with three replications. The agronomic and physical-chemical characteristics evaluated were: days for flowering, number of stems, plant height, number of leaves, green mass production, dry mass production, determination of total ash, determination of volatile content, insoluble lignin and determination of fixed carbon content. The data were submitted to analysis of variance and then, to estimate divergence, the generalized Mahalanobis distance was used as a measure of dissimilarity. Based on this matrix, the methods of Tocher's optimization clusters and the Hierarchical method of Average Grouping Between Groups (UPGMA) were used, and analysis of canonical variables, and the projection based on the first two canonical variables arranged in two-dimensional space. Singh criterion was also used to quantify the relative contribution of these characteristics to genetic divergence. The evaluated genotypes showed significant differences for all the evaluated characteristics. The combination between the 201429B001 and 201429B028 (394.98) genotype pairs was the most divergent and the combination between the 201429B015 and 201429B031 (6.31) genotypes was the most similar. The grouping generated by the Tocher Optimization method, hierarchical UPGMA and graphical dispersion showed similarity in the grouping of genotypes. The first two canonical variables were sufficient to explain about 81.78% of the total variation observed. The results showed a wide genetic diversity among the 34 genotypes of sorghum biomass. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/7536 10.33448/rsd-v9i9.7536 |
url |
https://rsdjournal.org/index.php/rsd/article/view/7536 |
identifier_str_mv |
10.33448/rsd-v9i9.7536 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/7536/6883 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 9; e552997536 Research, Society and Development; Vol. 9 Núm. 9; e552997536 Research, Society and Development; v. 9 n. 9; e552997536 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052656999464960 |