A method based on pix2pix to attenuate bias in the analysis of wound healing assays

Detalhes bibliográficos
Autor(a) principal: Schiefer, Elberth Manfron
Data de Publicação: 2022
Outros Autores: Santos, Andressa Flores, Cunha, Regiane Stafim da, Muller, Marcia, Stinghen, Andréa Emilia Marques, Fabris, José Luis, Negri, Lucas Hermann
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/34271
Resumo: The advances of new technologies in the machine learning area have led to the development of conditional generative adversarial networks with the direct use of images, such as is the case of the pix2pix model. A potential application for the pix2pix model discussed in this work is the analysis of images of wound healing or scratch assays that are widely used to evaluate in vitro cell migration. The most common way to evaluate the results of the wound healing assay is by manually detecting the wound area in the image, separating the empty area and the area occupied by cells, during 24, 48 or even 72 h. Although this procedure has for long been presented in the literature, it has been indicated that it lacks objectivity, it is time-consuming, and it leads to data misinterpretation. In an attempt to overcome the lack of robustness and consistency showed by the manual evaluation, this work aims to implement a method based on pix2pix to reduce bias in wound healing analysis, while introducing a new point of view of the images analysis. Manually introduced bias in the image processing algorithm presented deviations of up to 15 % when slightly varying a single variable, while the image processing performed by the model resulted in deviations mostly within 6 % when compared with manual analysis.
id UNIFEI_c3c8478abe73d51fccd0c578b98b0780
oai_identifier_str oai:ojs.pkp.sfu.ca:article/34271
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling A method based on pix2pix to attenuate bias in the analysis of wound healing assaysUn método basado en pix2pix para atenuar el sesgo en el análisis de ensayos de cicatrización de heridasUm método baseado em pix2pix para atenuar o viés na análise de ensaios de cicatrização de feridasAprendizado de máquinaMigração de célulasAnálise automatizadaCGAN.Aprendizaje automáticoMigración celularAnálisis automatizadoCGAN.Machine learningCell migrationAutomated analysisCGAN.The advances of new technologies in the machine learning area have led to the development of conditional generative adversarial networks with the direct use of images, such as is the case of the pix2pix model. A potential application for the pix2pix model discussed in this work is the analysis of images of wound healing or scratch assays that are widely used to evaluate in vitro cell migration. The most common way to evaluate the results of the wound healing assay is by manually detecting the wound area in the image, separating the empty area and the area occupied by cells, during 24, 48 or even 72 h. Although this procedure has for long been presented in the literature, it has been indicated that it lacks objectivity, it is time-consuming, and it leads to data misinterpretation. In an attempt to overcome the lack of robustness and consistency showed by the manual evaluation, this work aims to implement a method based on pix2pix to reduce bias in wound healing analysis, while introducing a new point of view of the images analysis. Manually introduced bias in the image processing algorithm presented deviations of up to 15 % when slightly varying a single variable, while the image processing performed by the model resulted in deviations mostly within 6 % when compared with manual analysis.Los avances de las nuevas tecnologías en el área de aprendizaje automático han llevado al desarrollo de redes adversarias generativas condicionales con uso directo de imágenes, como es el caso del modelo pix2pix. Una aplicación potencial para el modelo pix2pix discutido en este trabajo es el análisis de imágenes de curación de heridas o ensayos de rascado que se usan ampliamente para evaluar la migración celular in vitro. La forma más común de evaluar los resultados del ensayo de curación de heridas es detectando manualmente el área de la herida en la imagen, separando el área vacía y el área ocupada por células, durante 24, 48 o incluso 72 h. Aunque este procedimiento se ha presentado durante mucho tiempo en la literatura, se ha indicado que carece de objetividad, requiere mucho tiempo y conduce a una mala interpretación de los datos. En un intento por superar la falta de robustez y consistencia mostrada por la evaluación manual, este trabajo tiene como objetivo implementar un método basado en pix2pix para reducir el sesgo en el análisis de cicatrización de heridas, al tiempo que introduce un nuevo punto de vista del análisis de imágenes. El sesgo introducido manualmente en el algoritmo de procesamiento de imágenes presentó desviaciones de hasta un 15 % al variar ligeramente una sola variable, mientras que el procesamiento de imágenes realizado por el modelo resultó en desviaciones en su mayoría dentro del 6 % en comparación con el análisis manual.Os avanços das novas tecnologias na área de aprendizado de máquina levaram ao desenvolvimento de redes adversariais generativas condicionais com uso direto de imagens, como é o caso do modelo pix2pix. Uma aplicação potencial para o modelo pix2pix discutido neste trabalho é a análise de imagens de cicatrização de feridas ou ensaios de rasgos que são amplamente utilizados para avaliar a migração celular in vitro. A forma mais comum de avaliar os resultados do ensaio de cicatrização de feridas é detectando manualmente a área da ferida na imagem, separando a área vazia e a área ocupada por células, durante 24, 48 ou até 72 h. Embora este procedimento tenha sido apresentado há muito tempo na literatura, tem sido indicado que ele carece de objetividade, é demorado e leva a interpretações errôneas dos dados. Na tentativa de superar a falta de robustez e consistência demonstrada pela avaliação manual, este trabalho tem como objetivo implementar um método baseado no pix2pix para reduzir o viés na análise da cicatrização de feridas, ao mesmo tempo em que introduz um novo ponto de vista na análise das imagens. O viés introduzido manualmente no algoritmo de processamento de imagem apresentou desvios de até 15 % ao variar levemente uma única variável, enquanto o processamento de imagem realizado pelo modelo resultou em desvios dentro de 6 % quando comparado com a análise manual.Research, Society and Development2022-09-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3427110.33448/rsd-v11i12.34271Research, Society and Development; Vol. 11 No. 12; e125111234271Research, Society and Development; Vol. 11 Núm. 12; e125111234271Research, Society and Development; v. 11 n. 12; e1251112342712525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/34271/28905Copyright (c) 2022 Elberth Manfron Schiefer; Andressa Flores Santos; Regiane Stafim da Cunha; Marcia Muller; Andréa Emilia Marques Stinghen; José Luis Fabris; Lucas Hermann Negrihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSchiefer, Elberth ManfronSantos, Andressa FloresCunha, Regiane Stafim da Muller, MarciaStinghen, Andréa Emilia Marques Fabris, José Luis Negri, Lucas Hermann 2022-09-26T11:56:08Zoai:ojs.pkp.sfu.ca:article/34271Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:49:38.609482Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv A method based on pix2pix to attenuate bias in the analysis of wound healing assays
Un método basado en pix2pix para atenuar el sesgo en el análisis de ensayos de cicatrización de heridas
Um método baseado em pix2pix para atenuar o viés na análise de ensaios de cicatrização de feridas
title A method based on pix2pix to attenuate bias in the analysis of wound healing assays
spellingShingle A method based on pix2pix to attenuate bias in the analysis of wound healing assays
Schiefer, Elberth Manfron
Aprendizado de máquina
Migração de células
Análise automatizada
CGAN.
Aprendizaje automático
Migración celular
Análisis automatizado
CGAN.
Machine learning
Cell migration
Automated analysis
CGAN.
title_short A method based on pix2pix to attenuate bias in the analysis of wound healing assays
title_full A method based on pix2pix to attenuate bias in the analysis of wound healing assays
title_fullStr A method based on pix2pix to attenuate bias in the analysis of wound healing assays
title_full_unstemmed A method based on pix2pix to attenuate bias in the analysis of wound healing assays
title_sort A method based on pix2pix to attenuate bias in the analysis of wound healing assays
author Schiefer, Elberth Manfron
author_facet Schiefer, Elberth Manfron
Santos, Andressa Flores
Cunha, Regiane Stafim da
Muller, Marcia
Stinghen, Andréa Emilia Marques
Fabris, José Luis
Negri, Lucas Hermann
author_role author
author2 Santos, Andressa Flores
Cunha, Regiane Stafim da
Muller, Marcia
Stinghen, Andréa Emilia Marques
Fabris, José Luis
Negri, Lucas Hermann
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schiefer, Elberth Manfron
Santos, Andressa Flores
Cunha, Regiane Stafim da
Muller, Marcia
Stinghen, Andréa Emilia Marques
Fabris, José Luis
Negri, Lucas Hermann
dc.subject.por.fl_str_mv Aprendizado de máquina
Migração de células
Análise automatizada
CGAN.
Aprendizaje automático
Migración celular
Análisis automatizado
CGAN.
Machine learning
Cell migration
Automated analysis
CGAN.
topic Aprendizado de máquina
Migração de células
Análise automatizada
CGAN.
Aprendizaje automático
Migración celular
Análisis automatizado
CGAN.
Machine learning
Cell migration
Automated analysis
CGAN.
description The advances of new technologies in the machine learning area have led to the development of conditional generative adversarial networks with the direct use of images, such as is the case of the pix2pix model. A potential application for the pix2pix model discussed in this work is the analysis of images of wound healing or scratch assays that are widely used to evaluate in vitro cell migration. The most common way to evaluate the results of the wound healing assay is by manually detecting the wound area in the image, separating the empty area and the area occupied by cells, during 24, 48 or even 72 h. Although this procedure has for long been presented in the literature, it has been indicated that it lacks objectivity, it is time-consuming, and it leads to data misinterpretation. In an attempt to overcome the lack of robustness and consistency showed by the manual evaluation, this work aims to implement a method based on pix2pix to reduce bias in wound healing analysis, while introducing a new point of view of the images analysis. Manually introduced bias in the image processing algorithm presented deviations of up to 15 % when slightly varying a single variable, while the image processing performed by the model resulted in deviations mostly within 6 % when compared with manual analysis.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/34271
10.33448/rsd-v11i12.34271
url https://rsdjournal.org/index.php/rsd/article/view/34271
identifier_str_mv 10.33448/rsd-v11i12.34271
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/34271/28905
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 12; e125111234271
Research, Society and Development; Vol. 11 Núm. 12; e125111234271
Research, Society and Development; v. 11 n. 12; e125111234271
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052722425364480