Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/23665 |
Resumo: | The cold chain is crucial to ensure the quality and effectiveness of transported and stored medicines. For this, it is necessary to carry out the thermal mapping of routes for drugs transported between 15°C and 30°C, so that the most assertive decision can be taken without raising costs. This study aims to identify the main factors influencing the thermal mapping of pharmaceutical products in the cold chain and applying the machine learning technique. The method used for this systematic review is the Prisma, where the identification, screening, eligibility, and inclusion stages were analyzed. After analyzing 75 articles, the result shows that only eight papers were consistent with the use of modeling in the medicine cold chain distribution. Thus, it can be concluded that there is an extensive field to be researched regarding the use of prediction algorithms in the cold chain of drugs and vaccines. |
id |
UNIFEI_dbe6067c58c684314c901d184e0d320a |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/23665 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic reviewMapeo térmico de rutas en el transporte de productos farmacéuticos utilizando el enfoque de aprendizaje máquina: una revisión sistemáticaMapeamento térmico de rotas no transporte de produtos farmacêuticos usando a abordagem de aprendizagem da máquina: uma revisão sistemáticaCadena de fríoMedicamentosVacunaModeladoControl de calidad.Cold chainMedicinesVaccineModelingQuality control.Cadeia de frioMedicamentosVacinaModelagemControle de qualidade.The cold chain is crucial to ensure the quality and effectiveness of transported and stored medicines. For this, it is necessary to carry out the thermal mapping of routes for drugs transported between 15°C and 30°C, so that the most assertive decision can be taken without raising costs. This study aims to identify the main factors influencing the thermal mapping of pharmaceutical products in the cold chain and applying the machine learning technique. The method used for this systematic review is the Prisma, where the identification, screening, eligibility, and inclusion stages were analyzed. After analyzing 75 articles, the result shows that only eight papers were consistent with the use of modeling in the medicine cold chain distribution. Thus, it can be concluded that there is an extensive field to be researched regarding the use of prediction algorithms in the cold chain of drugs and vaccines.La cadena de frío es fundamental para garantizar la calidad y eficacia de los medicamentos transportados y almacenados. Para ello, es necesario realizar el mapeo térmico de las rutas de los medicamentos transportados entre 15 ° C y 30 ° C, para que se pueda tomar la decisión más asertiva sin incrementar los costos. Este estudio tiene como objetivo identificar los principales factores que influyen en el mapeo térmico de productos farmacéuticos en la cadena de frío y la aplicación de la técnica de aprendizaje automático. El método utilizado para esta revisión sistemática es el Prisma, donde se analizaron las etapas de identificación, cribado, elegibilidad e inclusión. Después de analizar 75 artículos, el resultado muestra que solo ocho artículos fueron consistentes con el uso de modelos en la distribución de la cadena de frío de los medicamentos. Así, se puede concluir que existe un amplio campo por investigar en cuanto al uso de algoritmos de predicción en la cadena de frío de medicamentos y vacunas.A rede de frio é fundamental para garantir a qualidade e eficácia dos medicamentos transportados e armazenados. Para isso, é necessário realizar o mapeamento térmico das rotas dos medicamentos transportados entre 15 ° C e 30 ° C, para que a decisão mais assertiva seja tomada sem aumento de custos. Este estudo tem como objetivo identificar os principais fatores que influenciam o mapeamento térmico de produtos farmacêuticos na cadeia de frio e a aplicação da técnica de aprendizado de máquina. O método utilizado para esta revisão sistemática é o Prisma, onde foram analisadas as etapas de identificação, triagem, elegibilidade e inclusão. Após análise de 75 artigos, o resultado mostra que apenas oito artigos foram consistentes com o uso de modelagem na distribuição da cadeia de frio de medicamentos. Assim, pode-se concluir que existe um amplo campo a ser pesquisado quanto ao uso de algoritmos de predição na cadeia de frio de medicamentos e vacinas.Research, Society and Development2021-12-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2366510.33448/rsd-v10i16.23665Research, Society and Development; Vol. 10 No. 16; e170101623665Research, Society and Development; Vol. 10 Núm. 16; e170101623665Research, Society and Development; v. 10 n. 16; e1701016236652525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/23665/20962Copyright (c) 2021 Clayton Gerber Mangini; Nilsa Duarte da Silva Lima; Irenilza de Alencar Nääshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMangini, Clayton GerberLima, Nilsa Duarte da SilvaNääs, Irenilza de Alencar 2021-12-20T11:03:07Zoai:ojs.pkp.sfu.ca:article/23665Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:42:27.871661Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review Mapeo térmico de rutas en el transporte de productos farmacéuticos utilizando el enfoque de aprendizaje máquina: una revisión sistemática Mapeamento térmico de rotas no transporte de produtos farmacêuticos usando a abordagem de aprendizagem da máquina: uma revisão sistemática |
title |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
spellingShingle |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review Mangini, Clayton Gerber Cadena de frío Medicamentos Vacuna Modelado Control de calidad. Cold chain Medicines Vaccine Modeling Quality control. Cadeia de frio Medicamentos Vacina Modelagem Controle de qualidade. |
title_short |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
title_full |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
title_fullStr |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
title_full_unstemmed |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
title_sort |
Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review |
author |
Mangini, Clayton Gerber |
author_facet |
Mangini, Clayton Gerber Lima, Nilsa Duarte da Silva Nääs, Irenilza de Alencar |
author_role |
author |
author2 |
Lima, Nilsa Duarte da Silva Nääs, Irenilza de Alencar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mangini, Clayton Gerber Lima, Nilsa Duarte da Silva Nääs, Irenilza de Alencar |
dc.subject.por.fl_str_mv |
Cadena de frío Medicamentos Vacuna Modelado Control de calidad. Cold chain Medicines Vaccine Modeling Quality control. Cadeia de frio Medicamentos Vacina Modelagem Controle de qualidade. |
topic |
Cadena de frío Medicamentos Vacuna Modelado Control de calidad. Cold chain Medicines Vaccine Modeling Quality control. Cadeia de frio Medicamentos Vacina Modelagem Controle de qualidade. |
description |
The cold chain is crucial to ensure the quality and effectiveness of transported and stored medicines. For this, it is necessary to carry out the thermal mapping of routes for drugs transported between 15°C and 30°C, so that the most assertive decision can be taken without raising costs. This study aims to identify the main factors influencing the thermal mapping of pharmaceutical products in the cold chain and applying the machine learning technique. The method used for this systematic review is the Prisma, where the identification, screening, eligibility, and inclusion stages were analyzed. After analyzing 75 articles, the result shows that only eight papers were consistent with the use of modeling in the medicine cold chain distribution. Thus, it can be concluded that there is an extensive field to be researched regarding the use of prediction algorithms in the cold chain of drugs and vaccines. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/23665 10.33448/rsd-v10i16.23665 |
url |
https://rsdjournal.org/index.php/rsd/article/view/23665 |
identifier_str_mv |
10.33448/rsd-v10i16.23665 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/23665/20962 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Clayton Gerber Mangini; Nilsa Duarte da Silva Lima; Irenilza de Alencar Nääs https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Clayton Gerber Mangini; Nilsa Duarte da Silva Lima; Irenilza de Alencar Nääs https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 16; e170101623665 Research, Society and Development; Vol. 10 Núm. 16; e170101623665 Research, Society and Development; v. 10 n. 16; e170101623665 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052698157121536 |