Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/10299 |
Resumo: | Since the first detected cases of COVID-19 in Brazil, researchers have made a great effort to try to understand the disease. Understanding the impact of the disease on people can be instrumental in identifying which groups can be considered at risk. Therefore, this study researches a probabilistic model based on a statistical model of non-linear regression analyzing the following variables: age, if you are a health professional, if you are resident in the Metropolitan Region of Belém (RMB), State of Pará and gender with the objective of identifying those people who have a greater impact on the number of people infected and killed by COVID-19, that is, people who are more likely to die. To carry out the research, we used the data of all infected people by COVID-19 in the State of Pará until July 2020. It can be verified according to the proposal of the probabilistic model that elderly people, with a odds ratio of 1.69 (95% CI 1.52-1.88), residents of Metropolitan Region of Belém, with an odds ratio of 2.14 (95% CI 2.02 - 2.27) and men, with an odds ratio of 1.83 (95% CI 1.73 - 1.95) are groups of people with a higher risk of dying from diseases, while health professionals, with a 0.36 chance ratio (CI9 5% 0.29 - 0.45), are less likely to die. |
id |
UNIFEI_de3864d353cb951a5c658440c6760462 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10299 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, BrazilAnálisis de regresión multivariante en la probabilidad de muerte en casos de COVID-19: un estudio de caso en el Estado de Pará, región amazónica, BrasilAnálise de regressão multivariada na probabilidade de óbitos em casos COVID-19: um estudo de caso no Estado do Pará, região amazônica, BrasilProbabilistic modelCOVID-19 in BrazilRisk groupAmazon region.Modelo probabilísticoCOVID-19 en BrasilGrupo de riesgoRegión Amazónica.COVID-19 no BrasilGrupo de riscoModelo probabilísticoRegião Amazônica.Since the first detected cases of COVID-19 in Brazil, researchers have made a great effort to try to understand the disease. Understanding the impact of the disease on people can be instrumental in identifying which groups can be considered at risk. Therefore, this study researches a probabilistic model based on a statistical model of non-linear regression analyzing the following variables: age, if you are a health professional, if you are resident in the Metropolitan Region of Belém (RMB), State of Pará and gender with the objective of identifying those people who have a greater impact on the number of people infected and killed by COVID-19, that is, people who are more likely to die. To carry out the research, we used the data of all infected people by COVID-19 in the State of Pará until July 2020. It can be verified according to the proposal of the probabilistic model that elderly people, with a odds ratio of 1.69 (95% CI 1.52-1.88), residents of Metropolitan Region of Belém, with an odds ratio of 2.14 (95% CI 2.02 - 2.27) and men, with an odds ratio of 1.83 (95% CI 1.73 - 1.95) are groups of people with a higher risk of dying from diseases, while health professionals, with a 0.36 chance ratio (CI9 5% 0.29 - 0.45), are less likely to die.Desde los primeros casos detectados de COVID-19 en Brasil, los investigadores han hecho un gran esfuerzo para intentar comprender la enfermedad. Comprender el impacto de la enfermedad en las personas puede ser fundamental para identificar qué grupos pueden considerarse en riesgo. Por tanto, este estudio investiga un modelo probabilístico basado en un modelo estadístico de regresión no lineal analizando las siguientes variables: edad, si es un profesional de la salud, si es residente en la Región Metropolitana de Belém (RMB), Estado de Pará y sexo con el objetivo de identificar a aquellas personas que tienen un mayor impacto en la cantidad de personas infectadas y asesinadas por COVID-19, es decir, las personas que tienen más probabilidades de morir. Para realizar la investigación, utilizamos los datos de todas las personas infectadas por COVID-19 en el Estado de Pará hasta julio de 2020. Se puede verificar según la propuesta del modelo probabilístico que las personas mayores, con una razón de momios de 1,69 (IC 95% 1,52-1,88), residentes de La Región Metropolitana de Belém, con un odds ratio de 2,14 (IC 95% 2,02 - 2,27) y los hombres, con un odds ratio de 1,83 (IC 95% 1,73 - 1,95) son grupos de personas con mayor riesgo de morir por enfermedades, mientras que los profesionales de la salud, con una razón de probabilidad de 0,36 (IC9 5% 0,29 - 0,45), tienen menos probabilidades de morir.Desde os primeiros casos detectados de COVID-19 no Brasil, os pesquisadores têm feito um grande esforço para tentar entender a doença. Compreender o impacto da doença nas pessoas pode ser fundamental para identificar quais grupos podem ser considerados de risco. Diante disso, este estudo pesquisa um modelo probabilístico baseado em um modelo estatístico de regressão não linear analisando as seguintes variáveis: idade, se você é profissional de saúde, se é residente na Região Metropolitana de Belém (RMB), Estado do Pará e gênero com o objetivo de identificar aquelas pessoas que têm um maior impacto no número de infectados e de óbitos por COVID-19, ou seja, pessoas com maiores probabilidades de ir a óbito. Para a realização da pesquisa, utilizamos os dados de todas as pessoas contaminadas pelo COVID-19 no Estado do Pará até julho de 2020. Pode ser verificado de acordo com a proposta do modelo probabilístico que idosos, com razão de chance de 1,69 (IC95% 1,52-1,88), moradores da Região Metropolitana de Belém, com razão de chance de 2,14 (IC95% 2,02 – 2,27) e os homens, com razão de chance de 1,83 (IC95% 1,73 – 1,95) são grupos de pessoas com maior risco de morrer de doenças, enquanto que profissionais da saúde, com razão de chance de 0,36 (IC95% 0,29 – 0,45), apresentam menores probabilidades de ir a óbito.Research, Society and Development2020-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1029910.33448/rsd-v9i11.10299Research, Society and Development; Vol. 9 No. 11; e71291110299Research, Society and Development; Vol. 9 Núm. 11; e71291110299Research, Society and Development; v. 9 n. 11; e712911102992525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/10299/9267Copyright (c) 2020 Cássio Pinho dos Reis; Herson Oliveira da Rocha; Nayara de Araújo Muzili Reis; Sávio Pinho dos Reis ; Gustavo Nogueira Dias; Gilberto Emanoel Reis Vogado; Vanessa Mayara Souza Pamplona ; Washington Luiz da Silva Juniorhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessReis, Cássio Pinho dos Rocha, Herson Oliveira da Reis, Nayara de Araújo Muzili Reis , Sávio Pinho dos Dias, Gustavo Nogueira Vogado, Gilberto Emanoel Reis Pamplona , Vanessa Mayara Souza Silva Junior, Washington Luiz da 2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/10299Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:23.576321Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil Análisis de regresión multivariante en la probabilidad de muerte en casos de COVID-19: un estudio de caso en el Estado de Pará, región amazónica, Brasil Análise de regressão multivariada na probabilidade de óbitos em casos COVID-19: um estudo de caso no Estado do Pará, região amazônica, Brasil |
title |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
spellingShingle |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil Reis, Cássio Pinho dos Probabilistic model COVID-19 in Brazil Risk group Amazon region. Modelo probabilístico COVID-19 en Brasil Grupo de riesgo Región Amazónica. COVID-19 no Brasil Grupo de risco Modelo probabilístico Região Amazônica. |
title_short |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
title_full |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
title_fullStr |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
title_full_unstemmed |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
title_sort |
Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil |
author |
Reis, Cássio Pinho dos |
author_facet |
Reis, Cássio Pinho dos Rocha, Herson Oliveira da Reis, Nayara de Araújo Muzili Reis , Sávio Pinho dos Dias, Gustavo Nogueira Vogado, Gilberto Emanoel Reis Pamplona , Vanessa Mayara Souza Silva Junior, Washington Luiz da |
author_role |
author |
author2 |
Rocha, Herson Oliveira da Reis, Nayara de Araújo Muzili Reis , Sávio Pinho dos Dias, Gustavo Nogueira Vogado, Gilberto Emanoel Reis Pamplona , Vanessa Mayara Souza Silva Junior, Washington Luiz da |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Reis, Cássio Pinho dos Rocha, Herson Oliveira da Reis, Nayara de Araújo Muzili Reis , Sávio Pinho dos Dias, Gustavo Nogueira Vogado, Gilberto Emanoel Reis Pamplona , Vanessa Mayara Souza Silva Junior, Washington Luiz da |
dc.subject.por.fl_str_mv |
Probabilistic model COVID-19 in Brazil Risk group Amazon region. Modelo probabilístico COVID-19 en Brasil Grupo de riesgo Región Amazónica. COVID-19 no Brasil Grupo de risco Modelo probabilístico Região Amazônica. |
topic |
Probabilistic model COVID-19 in Brazil Risk group Amazon region. Modelo probabilístico COVID-19 en Brasil Grupo de riesgo Región Amazónica. COVID-19 no Brasil Grupo de risco Modelo probabilístico Região Amazônica. |
description |
Since the first detected cases of COVID-19 in Brazil, researchers have made a great effort to try to understand the disease. Understanding the impact of the disease on people can be instrumental in identifying which groups can be considered at risk. Therefore, this study researches a probabilistic model based on a statistical model of non-linear regression analyzing the following variables: age, if you are a health professional, if you are resident in the Metropolitan Region of Belém (RMB), State of Pará and gender with the objective of identifying those people who have a greater impact on the number of people infected and killed by COVID-19, that is, people who are more likely to die. To carry out the research, we used the data of all infected people by COVID-19 in the State of Pará until July 2020. It can be verified according to the proposal of the probabilistic model that elderly people, with a odds ratio of 1.69 (95% CI 1.52-1.88), residents of Metropolitan Region of Belém, with an odds ratio of 2.14 (95% CI 2.02 - 2.27) and men, with an odds ratio of 1.83 (95% CI 1.73 - 1.95) are groups of people with a higher risk of dying from diseases, while health professionals, with a 0.36 chance ratio (CI9 5% 0.29 - 0.45), are less likely to die. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10299 10.33448/rsd-v9i11.10299 |
url |
https://rsdjournal.org/index.php/rsd/article/view/10299 |
identifier_str_mv |
10.33448/rsd-v9i11.10299 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10299/9267 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 11; e71291110299 Research, Society and Development; Vol. 9 Núm. 11; e71291110299 Research, Society and Development; v. 9 n. 11; e71291110299 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052664561795072 |