Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression

Detalhes bibliográficos
Autor(a) principal: Silva, Francisco Eduardo Mendes da
Data de Publicação: 2022
Outros Autores: Oliveira, Lincoln Moura de, Antunes, Fernando Luiz Marcelo, Sá Junior, Edilson Mineiro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/29579
Resumo: Brazil went through a period of energy crisis in the last year of 2021, due to low rivers that supply hydroelectric plants, being forced to activate thermal plants to supply electricity to the Brazilian population. This energy crisis brings several negative aspects, which can be avoided or partially avoided with the use of forecasts that can help in the decision making by the Electric Energy System Operators. Within this perspective, this work has as main objective to predict the generation of renewable electricity in the state of Ceará (CE) in a period of three days ahead, through the Prophet prediction model, an algorithm used on a large scale by the social network Facebook, using electricity generation data extracted from the website of the National System Operator (ONS). Data were collected from November 1, 2018 to March 1, 2021, totaling 852 measurements considering daily intervals. The forecasts were evaluated by the model evaluation metrics: RMSE, MSE and MAPE. The data was divided into 75% training data and 25% testing data. As a result, it was observed that the model obtained an error of 5.5% taking into account the MAPE metric.
id UNIFEI_e1f04fd4ef85215991b5ed2ca710ab0d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/29579
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression Pronóstico generación de energia eléctrica renovable a corto plazo en el estado de Ceará mediante modelo de regresión prophetPrevisão de geração de energia elétrica renovável em curto prazo no estado do Ceará utilizando modelo de regressão prophetGeração de Energia ElétricaEnergia RenovávelModelos de previsão.Generación de ElectricidadEnergías RenovablesModelos de pronóstico.Electric Power GenerationRenewable EnergyForecast models.Brazil went through a period of energy crisis in the last year of 2021, due to low rivers that supply hydroelectric plants, being forced to activate thermal plants to supply electricity to the Brazilian population. This energy crisis brings several negative aspects, which can be avoided or partially avoided with the use of forecasts that can help in the decision making by the Electric Energy System Operators. Within this perspective, this work has as main objective to predict the generation of renewable electricity in the state of Ceará (CE) in a period of three days ahead, through the Prophet prediction model, an algorithm used on a large scale by the social network Facebook, using electricity generation data extracted from the website of the National System Operator (ONS). Data were collected from November 1, 2018 to March 1, 2021, totaling 852 measurements considering daily intervals. The forecasts were evaluated by the model evaluation metrics: RMSE, MSE and MAPE. The data was divided into 75% training data and 25% testing data. As a result, it was observed that the model obtained an error of 5.5% taking into account the MAPE metric.Brasil atravesó un período de crisis energética en el último año de 2021, debido al bajo nivel de los ríos que abastecen a las centrales hidroeléctricas, viéndose obligado a activar centrales térmicas para abastecer de electricidad a la población brasileña. Esta crisis energética trae varios aspectos negativos, que pueden ser evitados o evitados parcialmente con el uso de pronósticos que pueden ayudar en la toma de decisiones por parte de los Operadores del Sistema de Energía Eléctrica. En esa perspectiva, este trabajo tiene como principal objetivo predecir la generación de energía eléctrica renovable en el estado de Ceará (CE) en un plazo de tres días, a través del modelo de predicción Prophet, un algoritmo utilizado a gran escala por la red social Facebook, utilizando datos de generación eléctrica extraídos del sitio web del Operador Nacional del Sistema (ONS). Los datos fueron recolectados del 1 de noviembre de 2018 al 1 de marzo de 2021, totalizando 852 mediciones considerando intervalos diarios. Los pronósticos fueron evaluados por las métricas de evaluación del modelo: RMSE, MSE y MAPE. Los datos se dividieron en un 75 % de datos de entrenamiento y un 25 % de datos de prueba. Como resultado se observó que el modelo obtuvo un error del 5,5% teniendo en cuenta la métrica MAPE.O Brasil passou por um período de crise energética no último ano de 2021, devido às baixas dos rios que abastecem as hidrelétricas, sendo obrigado a acionar as usinas térmicas para o abastecimento de energia elétrica da população brasileira. Essa crise energética trás vários aspectos negativos, que podem ser evitados ou parcialmente evitados com a utilização de previsões que podem ajudar na tomada de decisões por parte dos Operadores do Sistema de Energia Elétrica. Dentro desta perspectiva este trabalho tem como objetivo principal prever a geração de energia elétrica renovável do estado do Ceará (CE) em um período de três dias à frente, através do modelo de previsão Prophet, algoritmo utilizado em grande escala pela rede social Facebook, utilizando dados de geração de energia elétrica extraído do site do Operador Nacional do Sistema (ONS). Os dados foram coletados de 01 de novembro de 2018 a 01 de março de 2021, totalizando 852 medições considerando intervalos diários. As previsões foram avaliadas pelas métricas de avaliação de modelos: RMSE, MSE e MAPE. Os dados foram divididos em 75% de dados de treinamento e 25% em dados de testes. Como resultado, observou-se que o modelo obteve um erro 5,5% levando em consideração a métrica MAPE.Research, Society and Development2022-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2957910.33448/rsd-v11i7.29579Research, Society and Development; Vol. 11 No. 7; e12711729579Research, Society and Development; Vol. 11 Núm. 7; e12711729579Research, Society and Development; v. 11 n. 7; e127117295792525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/29579/25699Copyright (c) 2022 Francisco Eduardo Mendes da Silva; Lincoln Moura de Oliveira; Fernando Luiz Marcelo Antunes; Edilson Mineiro Sá Juniorhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Francisco Eduardo Mendes da Oliveira, Lincoln Moura de Antunes, Fernando Luiz Marcelo Sá Junior, Edilson Mineiro2022-06-06T15:12:05Zoai:ojs.pkp.sfu.ca:article/29579Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:46:36.715046Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
Pronóstico generación de energia eléctrica renovable a corto plazo en el estado de Ceará mediante modelo de regresión prophet
Previsão de geração de energia elétrica renovável em curto prazo no estado do Ceará utilizando modelo de regressão prophet
title Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
spellingShingle Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
Silva, Francisco Eduardo Mendes da
Geração de Energia Elétrica
Energia Renovável
Modelos de previsão.
Generación de Electricidad
Energías Renovables
Modelos de pronóstico.
Electric Power Generation
Renewable Energy
Forecast models.
title_short Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
title_full Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
title_fullStr Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
title_full_unstemmed Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
title_sort Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression
author Silva, Francisco Eduardo Mendes da
author_facet Silva, Francisco Eduardo Mendes da
Oliveira, Lincoln Moura de
Antunes, Fernando Luiz Marcelo
Sá Junior, Edilson Mineiro
author_role author
author2 Oliveira, Lincoln Moura de
Antunes, Fernando Luiz Marcelo
Sá Junior, Edilson Mineiro
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Francisco Eduardo Mendes da
Oliveira, Lincoln Moura de
Antunes, Fernando Luiz Marcelo
Sá Junior, Edilson Mineiro
dc.subject.por.fl_str_mv Geração de Energia Elétrica
Energia Renovável
Modelos de previsão.
Generación de Electricidad
Energías Renovables
Modelos de pronóstico.
Electric Power Generation
Renewable Energy
Forecast models.
topic Geração de Energia Elétrica
Energia Renovável
Modelos de previsão.
Generación de Electricidad
Energías Renovables
Modelos de pronóstico.
Electric Power Generation
Renewable Energy
Forecast models.
description Brazil went through a period of energy crisis in the last year of 2021, due to low rivers that supply hydroelectric plants, being forced to activate thermal plants to supply electricity to the Brazilian population. This energy crisis brings several negative aspects, which can be avoided or partially avoided with the use of forecasts that can help in the decision making by the Electric Energy System Operators. Within this perspective, this work has as main objective to predict the generation of renewable electricity in the state of Ceará (CE) in a period of three days ahead, through the Prophet prediction model, an algorithm used on a large scale by the social network Facebook, using electricity generation data extracted from the website of the National System Operator (ONS). Data were collected from November 1, 2018 to March 1, 2021, totaling 852 measurements considering daily intervals. The forecasts were evaluated by the model evaluation metrics: RMSE, MSE and MAPE. The data was divided into 75% training data and 25% testing data. As a result, it was observed that the model obtained an error of 5.5% taking into account the MAPE metric.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-18
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29579
10.33448/rsd-v11i7.29579
url https://rsdjournal.org/index.php/rsd/article/view/29579
identifier_str_mv 10.33448/rsd-v11i7.29579
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29579/25699
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 7; e12711729579
Research, Society and Development; Vol. 11 Núm. 7; e12711729579
Research, Society and Development; v. 11 n. 7; e12711729579
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052766368038912