Machine learning project: understanding hospitality as a competitive differential in restaurant management

Detalhes bibliográficos
Autor(a) principal: Oliveira, Paulo Sergio Gonçalves de
Data de Publicação: 2020
Outros Autores: Yoshiura, Thais Goldbard, Alves, Carlos Alberto
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Gestão e Projetos (GeP)
Texto Completo: https://periodicos.uninove.br/gep/article/view/18748
Resumo: The aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective.
id UNINOVE-4_2e835065e30b566796c35d9b48717e1e
oai_identifier_str oai:https://periodicos.uninove.br:article/18748
network_acronym_str UNINOVE-4
network_name_str Revista Gestão e Projetos (GeP)
repository_id_str
spelling Machine learning project: understanding hospitality as a competitive differential in restaurant managementProjeto de machine learning: compreensão da hospitalidade como diferencial competitivo na gestão de restaurantesSoftware Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage ManagementProjeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e BebidasThe aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective.O objetivo deste artigo é apresentar o desenvolvimento de um projeto de Machine Learning para prever a classificação do cliente em relação ao restaurante, possibilitando dessa forma a utilização da Hospitalidade como um diferencial competitivo. Para atingir o objetivo foi desenvolvido um projeto de Machine Learning, o qual envolveu o desenvolvimento de um script na linguagem R, que possibilita a análise e aplicação em Restaurantes, de forma a apoiar os gestores na tomada de decisões e eventuais ações de mitigação dos problemas. De forma a capturar a experiência dos especialistas, um modelo foi desenvolvido por meio da aplicação do algoritmo Naïve Bayes, o qual foi treinando utilizando dados obtidos do Site TripAdvisor, atingindo uma taxa de acerto de cerca de 84% com os dados de teste. Esse valor é aceitável para novas análises com dados oriundos das opiniões dos clientes, demonstrando dessa forma que o projeto atingiu o seu objetivo.Universidade Nove de Julho (Uninove)CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Grant 431786/2018-6Oliveira, Paulo Sergio Gonçalves deYoshiura, Thais GoldbardAlves, Carlos Alberto2020-12-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.uninove.br/gep/article/view/1874810.5585/gep.v11i3.18748Revista de Gestão e Projetos; v. 11, n. 3 (2020): (set./dez.); 26-452236-0972reponame:Revista Gestão e Projetos (GeP)instname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEporhttps://periodicos.uninove.br/gep/article/view/18748/8672https://periodicos.uninove.br/gep/article/downloadSuppFile/18748/14680Direitos autorais 2020 Revista de Gestão e Projetoshttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-15T20:20:42Zoai:https://periodicos.uninove.br:article/18748Revistahttps://periodicos.uninove.br/gepPRIhttps://periodicos.uninove.br/gep/oaigep@uninove.br || editor@revistagep.org || crismonteiro@uninove.br2236-09722236-0972opendoar:2021-06-15T20:20:42Revista Gestão e Projetos (GeP) - Universidade Nove de Julho (UNINOVE)false
dc.title.none.fl_str_mv Machine learning project: understanding hospitality as a competitive differential in restaurant management
Projeto de machine learning: compreensão da hospitalidade como diferencial competitivo na gestão de restaurantes
title Machine learning project: understanding hospitality as a competitive differential in restaurant management
spellingShingle Machine learning project: understanding hospitality as a competitive differential in restaurant management
Oliveira, Paulo Sergio Gonçalves de
Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management
Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas
title_short Machine learning project: understanding hospitality as a competitive differential in restaurant management
title_full Machine learning project: understanding hospitality as a competitive differential in restaurant management
title_fullStr Machine learning project: understanding hospitality as a competitive differential in restaurant management
title_full_unstemmed Machine learning project: understanding hospitality as a competitive differential in restaurant management
title_sort Machine learning project: understanding hospitality as a competitive differential in restaurant management
author Oliveira, Paulo Sergio Gonçalves de
author_facet Oliveira, Paulo Sergio Gonçalves de
Yoshiura, Thais Goldbard
Alves, Carlos Alberto
author_role author
author2 Yoshiura, Thais Goldbard
Alves, Carlos Alberto
author2_role author
author
dc.contributor.none.fl_str_mv
CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Grant 431786/2018-6
dc.contributor.author.fl_str_mv Oliveira, Paulo Sergio Gonçalves de
Yoshiura, Thais Goldbard
Alves, Carlos Alberto
dc.subject.por.fl_str_mv Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management
Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas
topic Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management
Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas
description The aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-17
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.uninove.br/gep/article/view/18748
10.5585/gep.v11i3.18748
url https://periodicos.uninove.br/gep/article/view/18748
identifier_str_mv 10.5585/gep.v11i3.18748
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.uninove.br/gep/article/view/18748/8672
https://periodicos.uninove.br/gep/article/downloadSuppFile/18748/14680
dc.rights.driver.fl_str_mv Direitos autorais 2020 Revista de Gestão e Projetos
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2020 Revista de Gestão e Projetos
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho (Uninove)
publisher.none.fl_str_mv Universidade Nove de Julho (Uninove)
dc.source.none.fl_str_mv Revista de Gestão e Projetos; v. 11, n. 3 (2020): (set./dez.); 26-45
2236-0972
reponame:Revista Gestão e Projetos (GeP)
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Revista Gestão e Projetos (GeP)
collection Revista Gestão e Projetos (GeP)
repository.name.fl_str_mv Revista Gestão e Projetos (GeP) - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv gep@uninove.br || editor@revistagep.org || crismonteiro@uninove.br
_version_ 1797052866152628224