Machine learning project: understanding hospitality as a competitive differential in restaurant management
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Gestão e Projetos (GeP) |
Texto Completo: | https://periodicos.uninove.br/gep/article/view/18748 |
Resumo: | The aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective. |
id |
UNINOVE-4_2e835065e30b566796c35d9b48717e1e |
---|---|
oai_identifier_str |
oai:https://periodicos.uninove.br:article/18748 |
network_acronym_str |
UNINOVE-4 |
network_name_str |
Revista Gestão e Projetos (GeP) |
repository_id_str |
|
spelling |
Machine learning project: understanding hospitality as a competitive differential in restaurant managementProjeto de machine learning: compreensão da hospitalidade como diferencial competitivo na gestão de restaurantesSoftware Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage ManagementProjeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e BebidasThe aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective.O objetivo deste artigo é apresentar o desenvolvimento de um projeto de Machine Learning para prever a classificação do cliente em relação ao restaurante, possibilitando dessa forma a utilização da Hospitalidade como um diferencial competitivo. Para atingir o objetivo foi desenvolvido um projeto de Machine Learning, o qual envolveu o desenvolvimento de um script na linguagem R, que possibilita a análise e aplicação em Restaurantes, de forma a apoiar os gestores na tomada de decisões e eventuais ações de mitigação dos problemas. De forma a capturar a experiência dos especialistas, um modelo foi desenvolvido por meio da aplicação do algoritmo Naïve Bayes, o qual foi treinando utilizando dados obtidos do Site TripAdvisor, atingindo uma taxa de acerto de cerca de 84% com os dados de teste. Esse valor é aceitável para novas análises com dados oriundos das opiniões dos clientes, demonstrando dessa forma que o projeto atingiu o seu objetivo.Universidade Nove de Julho (Uninove)CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Grant 431786/2018-6Oliveira, Paulo Sergio Gonçalves deYoshiura, Thais GoldbardAlves, Carlos Alberto2020-12-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.uninove.br/gep/article/view/1874810.5585/gep.v11i3.18748Revista de Gestão e Projetos; v. 11, n. 3 (2020): (set./dez.); 26-452236-0972reponame:Revista Gestão e Projetos (GeP)instname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEporhttps://periodicos.uninove.br/gep/article/view/18748/8672https://periodicos.uninove.br/gep/article/downloadSuppFile/18748/14680Direitos autorais 2020 Revista de Gestão e Projetoshttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-15T20:20:42Zoai:https://periodicos.uninove.br:article/18748Revistahttps://periodicos.uninove.br/gepPRIhttps://periodicos.uninove.br/gep/oaigep@uninove.br || editor@revistagep.org || crismonteiro@uninove.br2236-09722236-0972opendoar:2021-06-15T20:20:42Revista Gestão e Projetos (GeP) - Universidade Nove de Julho (UNINOVE)false |
dc.title.none.fl_str_mv |
Machine learning project: understanding hospitality as a competitive differential in restaurant management Projeto de machine learning: compreensão da hospitalidade como diferencial competitivo na gestão de restaurantes |
title |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
spellingShingle |
Machine learning project: understanding hospitality as a competitive differential in restaurant management Oliveira, Paulo Sergio Gonçalves de Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas |
title_short |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
title_full |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
title_fullStr |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
title_full_unstemmed |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
title_sort |
Machine learning project: understanding hospitality as a competitive differential in restaurant management |
author |
Oliveira, Paulo Sergio Gonçalves de |
author_facet |
Oliveira, Paulo Sergio Gonçalves de Yoshiura, Thais Goldbard Alves, Carlos Alberto |
author_role |
author |
author2 |
Yoshiura, Thais Goldbard Alves, Carlos Alberto |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Grant 431786/2018-6 |
dc.contributor.author.fl_str_mv |
Oliveira, Paulo Sergio Gonçalves de Yoshiura, Thais Goldbard Alves, Carlos Alberto |
dc.subject.por.fl_str_mv |
Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas |
topic |
Software Design; Naïve Bayes; Machine Learning; Hospitality in Service Competitiveness; Food and Beverage Management Projeto de Software; Naïve Bayes; Machine Learning; Hospitalidade na Competitividade de Serviços; Gestão em Alimentos e Bebidas |
description |
The aim of this article is to present the development of a Machine Learning project to predict the classification of the customer in relation to the restaurant, thus enabling the use of Hospitality as a competitive differential. To achieve the objective, a Machine Learning project was developed, which involved the development of a script in the R language, which allows analysis and application in Restaurants, in order to support managers in decision-making and eventual actions to mitigate problems. In order to capture the experts' experience, a model was developed by applying the Naïve Bayes algorithm, which was trained using data obtained from the TripAdvisor Site, reaching a hit rate of around 84% with the test data. This value is acceptable for new analyzes with data from customer opinions, thus demonstrating that the project has achieved its objective. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-17 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.uninove.br/gep/article/view/18748 10.5585/gep.v11i3.18748 |
url |
https://periodicos.uninove.br/gep/article/view/18748 |
identifier_str_mv |
10.5585/gep.v11i3.18748 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.uninove.br/gep/article/view/18748/8672 https://periodicos.uninove.br/gep/article/downloadSuppFile/18748/14680 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2020 Revista de Gestão e Projetos https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2020 Revista de Gestão e Projetos https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Nove de Julho (Uninove) |
publisher.none.fl_str_mv |
Universidade Nove de Julho (Uninove) |
dc.source.none.fl_str_mv |
Revista de Gestão e Projetos; v. 11, n. 3 (2020): (set./dez.); 26-45 2236-0972 reponame:Revista Gestão e Projetos (GeP) instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
instname_str |
Universidade Nove de Julho (UNINOVE) |
instacron_str |
UNINOVE |
institution |
UNINOVE |
reponame_str |
Revista Gestão e Projetos (GeP) |
collection |
Revista Gestão e Projetos (GeP) |
repository.name.fl_str_mv |
Revista Gestão e Projetos (GeP) - Universidade Nove de Julho (UNINOVE) |
repository.mail.fl_str_mv |
gep@uninove.br || editor@revistagep.org || crismonteiro@uninove.br |
_version_ |
1797052866152628224 |