Distribuição slash multivariada aplicada a dados agrícolas

Detalhes bibliográficos
Autor(a) principal: Fagundes, Regiane Slongo
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/3087
Resumo: This study aimed at a discussing problems of multivariate statistical inference and linear spatial modeling when observations are from a continuous, symmetric population, with multivariate slash distribution. Firstly, a reparametrization of slash distribution was performed, assuming the existence of the finite second moment. Thus, some iterant properties were shown. Analytical expressions were tested for the score function and Fisher information matrix of reparameterized distribution. An approach to estimate some parameters by maximum likelihood was considered based at the EM (Expectation-Maximization) algorithm. Linear hypothesis tests have been described regarding the means vector and the covariance matrix using statistics such as C(α), likelihood ratio, Wald, and score. Studies of simulation were carried out to evaluate the efficiency of the statistical tests and EM algorithm. Data related to the agricultural area illustrated the methodology developed, and the hypothesis tests for equality of means, sphericity and equicorrelation were also applied. A slash linear spatial model, with and without the use of covariates, was proposed. Were Discussed the global and local influence diagnostic analysis in order to evaluate the influence of observations on the process of parameters’estimation. The curvatures required for the local influence procedure and based on the slash model were derived, in which the perturbation scheme has been chosen properly and related to the different perturbation schemes. Spatial variability maps of chemical attributes of soil and yield were generated by kriging with external drift. Finally results of simulations and applications indicated that the slash distribution is a robust alternative when the data present high kurtosis.
id UNIOESTE-1_0f84be33caa98730983fe514ccf5dfe5
oai_identifier_str oai:tede.unioeste.br:tede/3087
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Galea, Manuelhttp://lattes.cnpq.br/8259390182729067Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Assumpção, Rosangela Aparecida Botinhahttp://lattes.cnpq.br/5532192685456247De Bastiani, Fernandahttp://lattes.cnpq.br/5519064508209103http://lattes.cnpq.br/3383322132577252Fagundes, Regiane Slongo2017-09-25T18:57:03Z2017-01-17FAGUNDES, Regiane Slongo. Distribuição slash multivariada aplicada a dados agrícolas. 2017. 164 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017.http://tede.unioeste.br/handle/tede/3087This study aimed at a discussing problems of multivariate statistical inference and linear spatial modeling when observations are from a continuous, symmetric population, with multivariate slash distribution. Firstly, a reparametrization of slash distribution was performed, assuming the existence of the finite second moment. Thus, some iterant properties were shown. Analytical expressions were tested for the score function and Fisher information matrix of reparameterized distribution. An approach to estimate some parameters by maximum likelihood was considered based at the EM (Expectation-Maximization) algorithm. Linear hypothesis tests have been described regarding the means vector and the covariance matrix using statistics such as C(α), likelihood ratio, Wald, and score. Studies of simulation were carried out to evaluate the efficiency of the statistical tests and EM algorithm. Data related to the agricultural area illustrated the methodology developed, and the hypothesis tests for equality of means, sphericity and equicorrelation were also applied. A slash linear spatial model, with and without the use of covariates, was proposed. Were Discussed the global and local influence diagnostic analysis in order to evaluate the influence of observations on the process of parameters’estimation. The curvatures required for the local influence procedure and based on the slash model were derived, in which the perturbation scheme has been chosen properly and related to the different perturbation schemes. Spatial variability maps of chemical attributes of soil and yield were generated by kriging with external drift. Finally results of simulations and applications indicated that the slash distribution is a robust alternative when the data present high kurtosis.O objetivo deste trabalho foi discutir problemas de inferência estatística multivariada e de modelagem espacial quando as observações são provenientes de uma população contínua, simétrica, com distribuição slash multivariada. Inicialmente, foi realizada uma reparametrização da distribuição slash supondo existência do segundo momento finito, sendo apresentadas algumas propriedades recorrentes. Provaram-se expressões analíticas para a função escore e matriz de informação de Fisher da distribuição reparametrizada. Abordou-se um enfoque para a estimação dos parâmetros por máxima verossimilhança considerando um algoritmo do tipo EM (Esperança-Maximização). Descreveu-se a prova de hipóteses lineares sob o vetor de médias e matriz de covariância com o uso das estatísticas C(α), razão de verossimilhança, Wald e score. Estudos de simulação foram realizados para avaliar a eficiência dos testes estatísticos e do algoritmo EM. Dados relacionados à área agrícola ilustraram a metodologia desenvolvida, sendo aplicado sobre os mesmos os testes de igualdade de médias, esfericidade e equicorrelação. Como ilustração da aplicação da distribuição slash multivariada na área de modelagem estatística, o modelo espacial linear slash, com e sem o uso de covariáveis, foi discutido e proposto. Com o intuito de avaliar a influência das observações no processo de estimação dos parâmetros, discussões relacionadas à análise de diagnóstico, global e local, foram apresentadas. Derivaram-se as curvaturas requeridas no procedimento de influência local para o modelo slash, adequando o esquema de perturbação a distribuição e considerando diferentes esquemas de perturbação. Mapas de variabilidade espacial de atributos químicos do solo e produtividade foram gerados utilizando krigagem com drift externo. Os resultados das simulações e aplicações indicaram que a distribuição slash é uma alternativa robusta quando os dados apresentam alta curtose.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-25T18:57:03Z No. of bitstreams: 1 Regiane_Fagundes2017.pdf: 6331934 bytes, checksum: faab7007f3c7c2e91c6bf26bc30fea8e (MD5)Made available in DSpace on 2017-09-25T18:57:03Z (GMT). No. of bitstreams: 1 Regiane_Fagundes2017.pdf: 6331934 bytes, checksum: faab7007f3c7c2e91c6bf26bc30fea8e (MD5) Previous issue date: 2017-01-17Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA)application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e TecnológicasAlgoritmo EMDiagnóstico de influência global e localModelagem espacial linear slashTestes de hipótesesEM algorithmGlobal and local influenceSlash linear spatial modelHypothesis testsCIENCIAS AGRARIAS::ENGENHARIA AGRICOLADistribuição slash multivariada aplicada a dados agrícolasMultivariate slash distribution applied to agricultural datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060060022143744428683820159185445721588761555623134973106312664info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALRegiane_Fagundes2017.pdfRegiane_Fagundes2017.pdfapplication/pdf6331934http://tede.unioeste.br:8080/tede/bitstream/tede/3087/2/Regiane_Fagundes2017.pdffaab7007f3c7c2e91c6bf26bc30fea8eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3087/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30872017-09-25 15:57:03.436oai:tede.unioeste.br:tede/3087Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-09-25T18:57:03Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Distribuição slash multivariada aplicada a dados agrícolas
dc.title.alternative.eng.fl_str_mv Multivariate slash distribution applied to agricultural data
title Distribuição slash multivariada aplicada a dados agrícolas
spellingShingle Distribuição slash multivariada aplicada a dados agrícolas
Fagundes, Regiane Slongo
Algoritmo EM
Diagnóstico de influência global e local
Modelagem espacial linear slash
Testes de hipóteses
EM algorithm
Global and local influence
Slash linear spatial model
Hypothesis tests
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Distribuição slash multivariada aplicada a dados agrícolas
title_full Distribuição slash multivariada aplicada a dados agrícolas
title_fullStr Distribuição slash multivariada aplicada a dados agrícolas
title_full_unstemmed Distribuição slash multivariada aplicada a dados agrícolas
title_sort Distribuição slash multivariada aplicada a dados agrícolas
author Fagundes, Regiane Slongo
author_facet Fagundes, Regiane Slongo
author_role author
dc.contributor.advisor1.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4179444121729414
dc.contributor.advisor-co1.fl_str_mv Galea, Manuel
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8259390182729067
dc.contributor.advisor-co2.fl_str_mv Guedes, Luciana Pagliosa Carvalho
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/3195220544719864
dc.contributor.referee1.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee2.fl_str_mv Assumpção, Rosangela Aparecida Botinha
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5532192685456247
dc.contributor.referee3.fl_str_mv De Bastiani, Fernanda
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5519064508209103
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3383322132577252
dc.contributor.author.fl_str_mv Fagundes, Regiane Slongo
contributor_str_mv Opazo, Miguel Angel Uribe
Galea, Manuel
Guedes, Luciana Pagliosa Carvalho
Johann, Jerry Adriani
Assumpção, Rosangela Aparecida Botinha
De Bastiani, Fernanda
dc.subject.por.fl_str_mv Algoritmo EM
Diagnóstico de influência global e local
Modelagem espacial linear slash
Testes de hipóteses
topic Algoritmo EM
Diagnóstico de influência global e local
Modelagem espacial linear slash
Testes de hipóteses
EM algorithm
Global and local influence
Slash linear spatial model
Hypothesis tests
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv EM algorithm
Global and local influence
Slash linear spatial model
Hypothesis tests
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description This study aimed at a discussing problems of multivariate statistical inference and linear spatial modeling when observations are from a continuous, symmetric population, with multivariate slash distribution. Firstly, a reparametrization of slash distribution was performed, assuming the existence of the finite second moment. Thus, some iterant properties were shown. Analytical expressions were tested for the score function and Fisher information matrix of reparameterized distribution. An approach to estimate some parameters by maximum likelihood was considered based at the EM (Expectation-Maximization) algorithm. Linear hypothesis tests have been described regarding the means vector and the covariance matrix using statistics such as C(α), likelihood ratio, Wald, and score. Studies of simulation were carried out to evaluate the efficiency of the statistical tests and EM algorithm. Data related to the agricultural area illustrated the methodology developed, and the hypothesis tests for equality of means, sphericity and equicorrelation were also applied. A slash linear spatial model, with and without the use of covariates, was proposed. Were Discussed the global and local influence diagnostic analysis in order to evaluate the influence of observations on the process of parameters’estimation. The curvatures required for the local influence procedure and based on the slash model were derived, in which the perturbation scheme has been chosen properly and related to the different perturbation schemes. Spatial variability maps of chemical attributes of soil and yield were generated by kriging with external drift. Finally results of simulations and applications indicated that the slash distribution is a robust alternative when the data present high kurtosis.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-09-25T18:57:03Z
dc.date.issued.fl_str_mv 2017-01-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FAGUNDES, Regiane Slongo. Distribuição slash multivariada aplicada a dados agrícolas. 2017. 164 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/3087
identifier_str_mv FAGUNDES, Regiane Slongo. Distribuição slash multivariada aplicada a dados agrícolas. 2017. 164 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017.
url http://tede.unioeste.br/handle/tede/3087
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 623134973106312664
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/3087/2/Regiane_Fagundes2017.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/3087/1/license.txt
bitstream.checksum.fl_str_mv faab7007f3c7c2e91c6bf26bc30fea8e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723383274995712