Orquestração personalizada de contêineres

Detalhes bibliográficos
Autor(a) principal: Santos , Luiz Fernando Altran dos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/5996
Resumo: Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workload
id UNIOESTE-1_3b748caf4b4fb22a4c7ae22a9f74c2d3
oai_identifier_str oai:tede.unioeste.br:tede/5996
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Galante , Guilhermehttp://lattes.cnpq.br/1467826050353891Galante , Guilhermehttp://lattes.cnpq.br/1467826050353891Vasata , Darlonhttp://lattes.cnpq.br/1343104664853305Camargo , Edson Tavares dehttp://lattes.cnpq.br/3434910548756014Oyamada , Marcio Seijihttp://lattes.cnpq.br/6642959615863178http://lattes.cnpq.br/3804000457226274Santos , Luiz Fernando Altran dos2022-05-03T17:26:17Z2022-02-17Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022.https://tede.unioeste.br/handle/tede/5996Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workloadAs políticas de alocação de contêineres presentes em orquestradores modernos, tal como o Kubernetes, são completamente agnósticas no que diz respeito a demandas específicas das aplicações ou atendimento a requisitos de negócio. Geralmente realizam a alocação das aplicações simplesmente espalhando-as entre os nós de trabalho usando algoritmos como Round-Robin ou First-Fit. Além disso, ao se delinear o estado da arte, verifica-se que as estratégias propostas não satisfazem os critérios de escalonamento de aplicações em ambientes de produção reais. Neste trabalho apresenta-se uma técnica que permite a personalização do escalonamento como alternativa ao comportamento padrão oferecido pelas ferramentas de orquestração de cargas de trabalho conteinerizadas em ambientes multi-cloud, realizando tratativas e validações pertinentes para se atingir o objetivo de realizar o direcionamento das instâncias da aplicação a nós computacionais com maior afinidade. Para isso, são consideradas características desejáveis ou impositivas, obtidas a partir da etapa de levantamento de requisitos durante a concepção da aplicação, ou ainda, na etapa de contratação do serviço de hospedagem em nuvem. Buscando oferecer uma alternativa para este comportamento e num formato de fácil utilização, propõe-se um escalonador personalizado que realiza uma análise de afinidade a partir de rótulos definidos em metadados dos objetos que representam cada um dos nós computacionais e cargas de trabalho em um ambiente orquestrado, e como segunda característica, prioriza a escolha através daqueles nós com a maior capacidade computacional ociosa, garantindo um direcionamento que respeite regras e restrições pré-definidas, de acordo com requisitos de negócio da aplicação. Para validação, foi realizada a construção de cenários hipotéticos com definição de rótulos aleatórios, que de alguma forma possuíam afinidade com um ou mais nós computacionais disponíveis no ecossistema multi-cloud construído, constituído por 25 nós distribuídos por 4 fornecedores de nuvem pública, com diferentes configurações de hardware e localização geográfica, muito semelhante aquele encontrado em empresas que exploram este tipo de serviço. Também foi realizada uma validação exclusiva para metrificação de desempenho do processo de escalonamento, com o objetivo de analisar as diferenças de tempo gasto entre um escalonador padrão e o proposto, sob as mesmas condições e cargas de trabalho.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2022-05-03T17:26:17Z No. of bitstreams: 2 Luiz_Santos2022.pdf: 1586879 bytes, checksum: f56f0b63cc769abe74d749125c640ad1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2022-05-03T17:26:17Z (GMT). No. of bitstreams: 2 Luiz_Santos2022.pdf: 1586879 bytes, checksum: f56f0b63cc769abe74d749125c640ad1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-02-17application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia Elétrica e ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMulti-cloudContêineresEscalonadorKubernetesMulti-cloudContainerSchedulerKubernetesCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOrquestração personalizada de contêineresCustom scheduler for Kubernetesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-104008466956507264960060060022143744428683820153671711205811204509reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLuiz_Santos2022.pdfLuiz_Santos2022.pdfapplication/pdf1586879http://tede.unioeste.br:8080/tede/bitstream/tede/5996/5/Luiz_Santos2022.pdff56f0b63cc769abe74d749125c640ad1MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/5996/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5996/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5996/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5996/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/59962022-11-17 12:00:56.183oai:tede.unioeste.br:tede/5996Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2022-11-17T15:00:56Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Orquestração personalizada de contêineres
dc.title.alternative.eng.fl_str_mv Custom scheduler for Kubernetes
title Orquestração personalizada de contêineres
spellingShingle Orquestração personalizada de contêineres
Santos , Luiz Fernando Altran dos
Multi-cloud
Contêineres
Escalonador
Kubernetes
Multi-cloud
Container
Scheduler
Kubernetes
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Orquestração personalizada de contêineres
title_full Orquestração personalizada de contêineres
title_fullStr Orquestração personalizada de contêineres
title_full_unstemmed Orquestração personalizada de contêineres
title_sort Orquestração personalizada de contêineres
author Santos , Luiz Fernando Altran dos
author_facet Santos , Luiz Fernando Altran dos
author_role author
dc.contributor.advisor1.fl_str_mv Galante , Guilherme
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1467826050353891
dc.contributor.referee1.fl_str_mv Galante , Guilherme
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1467826050353891
dc.contributor.referee2.fl_str_mv Vasata , Darlon
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1343104664853305
dc.contributor.referee3.fl_str_mv Camargo , Edson Tavares de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3434910548756014
dc.contributor.referee4.fl_str_mv Oyamada , Marcio Seiji
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6642959615863178
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3804000457226274
dc.contributor.author.fl_str_mv Santos , Luiz Fernando Altran dos
contributor_str_mv Galante , Guilherme
Galante , Guilherme
Vasata , Darlon
Camargo , Edson Tavares de
Oyamada , Marcio Seiji
dc.subject.por.fl_str_mv Multi-cloud
Contêineres
Escalonador
Kubernetes
topic Multi-cloud
Contêineres
Escalonador
Kubernetes
Multi-cloud
Container
Scheduler
Kubernetes
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Multi-cloud
Container
Scheduler
Kubernetes
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workload
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-05-03T17:26:17Z
dc.date.issued.fl_str_mv 2022-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/5996
identifier_str_mv Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022.
url https://tede.unioeste.br/handle/tede/5996
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -1040084669565072649
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica e Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/5996/5/Luiz_Santos2022.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5996/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/5996/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/5996/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5996/1/license.txt
bitstream.checksum.fl_str_mv f56f0b63cc769abe74d749125c640ad1
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723456463503360