Orquestração personalizada de contêineres
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/5996 |
Resumo: | Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workload |
id |
UNIOESTE-1_3b748caf4b4fb22a4c7ae22a9f74c2d3 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/5996 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Galante , Guilhermehttp://lattes.cnpq.br/1467826050353891Galante , Guilhermehttp://lattes.cnpq.br/1467826050353891Vasata , Darlonhttp://lattes.cnpq.br/1343104664853305Camargo , Edson Tavares dehttp://lattes.cnpq.br/3434910548756014Oyamada , Marcio Seijihttp://lattes.cnpq.br/6642959615863178http://lattes.cnpq.br/3804000457226274Santos , Luiz Fernando Altran dos2022-05-03T17:26:17Z2022-02-17Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022.https://tede.unioeste.br/handle/tede/5996Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workloadAs políticas de alocação de contêineres presentes em orquestradores modernos, tal como o Kubernetes, são completamente agnósticas no que diz respeito a demandas específicas das aplicações ou atendimento a requisitos de negócio. Geralmente realizam a alocação das aplicações simplesmente espalhando-as entre os nós de trabalho usando algoritmos como Round-Robin ou First-Fit. Além disso, ao se delinear o estado da arte, verifica-se que as estratégias propostas não satisfazem os critérios de escalonamento de aplicações em ambientes de produção reais. Neste trabalho apresenta-se uma técnica que permite a personalização do escalonamento como alternativa ao comportamento padrão oferecido pelas ferramentas de orquestração de cargas de trabalho conteinerizadas em ambientes multi-cloud, realizando tratativas e validações pertinentes para se atingir o objetivo de realizar o direcionamento das instâncias da aplicação a nós computacionais com maior afinidade. Para isso, são consideradas características desejáveis ou impositivas, obtidas a partir da etapa de levantamento de requisitos durante a concepção da aplicação, ou ainda, na etapa de contratação do serviço de hospedagem em nuvem. Buscando oferecer uma alternativa para este comportamento e num formato de fácil utilização, propõe-se um escalonador personalizado que realiza uma análise de afinidade a partir de rótulos definidos em metadados dos objetos que representam cada um dos nós computacionais e cargas de trabalho em um ambiente orquestrado, e como segunda característica, prioriza a escolha através daqueles nós com a maior capacidade computacional ociosa, garantindo um direcionamento que respeite regras e restrições pré-definidas, de acordo com requisitos de negócio da aplicação. Para validação, foi realizada a construção de cenários hipotéticos com definição de rótulos aleatórios, que de alguma forma possuíam afinidade com um ou mais nós computacionais disponíveis no ecossistema multi-cloud construído, constituído por 25 nós distribuídos por 4 fornecedores de nuvem pública, com diferentes configurações de hardware e localização geográfica, muito semelhante aquele encontrado em empresas que exploram este tipo de serviço. Também foi realizada uma validação exclusiva para metrificação de desempenho do processo de escalonamento, com o objetivo de analisar as diferenças de tempo gasto entre um escalonador padrão e o proposto, sob as mesmas condições e cargas de trabalho.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2022-05-03T17:26:17Z No. of bitstreams: 2 Luiz_Santos2022.pdf: 1586879 bytes, checksum: f56f0b63cc769abe74d749125c640ad1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2022-05-03T17:26:17Z (GMT). No. of bitstreams: 2 Luiz_Santos2022.pdf: 1586879 bytes, checksum: f56f0b63cc769abe74d749125c640ad1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-02-17application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia Elétrica e ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMulti-cloudContêineresEscalonadorKubernetesMulti-cloudContainerSchedulerKubernetesCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOrquestração personalizada de contêineresCustom scheduler for Kubernetesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-104008466956507264960060060022143744428683820153671711205811204509reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLuiz_Santos2022.pdfLuiz_Santos2022.pdfapplication/pdf1586879http://tede.unioeste.br:8080/tede/bitstream/tede/5996/5/Luiz_Santos2022.pdff56f0b63cc769abe74d749125c640ad1MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/5996/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5996/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5996/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5996/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/59962022-11-17 12:00:56.183oai:tede.unioeste.br:tede/5996Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2022-11-17T15:00:56Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Orquestração personalizada de contêineres |
dc.title.alternative.eng.fl_str_mv |
Custom scheduler for Kubernetes |
title |
Orquestração personalizada de contêineres |
spellingShingle |
Orquestração personalizada de contêineres Santos , Luiz Fernando Altran dos Multi-cloud Contêineres Escalonador Kubernetes Multi-cloud Container Scheduler Kubernetes CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Orquestração personalizada de contêineres |
title_full |
Orquestração personalizada de contêineres |
title_fullStr |
Orquestração personalizada de contêineres |
title_full_unstemmed |
Orquestração personalizada de contêineres |
title_sort |
Orquestração personalizada de contêineres |
author |
Santos , Luiz Fernando Altran dos |
author_facet |
Santos , Luiz Fernando Altran dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Galante , Guilherme |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1467826050353891 |
dc.contributor.referee1.fl_str_mv |
Galante , Guilherme |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1467826050353891 |
dc.contributor.referee2.fl_str_mv |
Vasata , Darlon |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1343104664853305 |
dc.contributor.referee3.fl_str_mv |
Camargo , Edson Tavares de |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3434910548756014 |
dc.contributor.referee4.fl_str_mv |
Oyamada , Marcio Seiji |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/6642959615863178 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3804000457226274 |
dc.contributor.author.fl_str_mv |
Santos , Luiz Fernando Altran dos |
contributor_str_mv |
Galante , Guilherme Galante , Guilherme Vasata , Darlon Camargo , Edson Tavares de Oyamada , Marcio Seiji |
dc.subject.por.fl_str_mv |
Multi-cloud Contêineres Escalonador Kubernetes |
topic |
Multi-cloud Contêineres Escalonador Kubernetes Multi-cloud Container Scheduler Kubernetes CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Multi-cloud Container Scheduler Kubernetes |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Container allocation policies present in modern orchestration tools, such as Kubernetes, are completely agnostic with respect to specific application requirements or meeting business rules. They usually perform the schedule of applications simply by spreading them among the worker nodes using algorithms such as Round-Robin or First-Fit. Furthermore, when outlining the state of the art, it appears that the proposed strategies do not satisfy the criteria for scheduling applications in real production environments. This work presents a technique that allows the customization of scheduling as an alternative to the default behavior offered by the orchestration tools of containerized workloads in multi-cloud environments, carrying out pertinent negotiations and validations to achieve the objective of performing the scaling of the application instances to compute nodes with higher affinity. For this, desirable or impositive features are considered, obtained from the requirements phase during the design of the application, or even at the phase of contracting the cloud hosting service. Looking to offer an alternative to this behavior and in an easy-to-use approach, we propose a custom scheduler that performs an affinity analysis from labels defined in metadata of objects that represent each of the compute nodes and workloads in an orchestrated environment, and as a second feature, prioritize the choice through those nodes with the highest idle computational resources, ensure a result that respects pre-defined rules and restrictions, according to the application business requirements. For validation, hypothetical scenarios were built with the definition of random labels, which somehow had an affinity with one or more compute nodes available in the built multi-cloud environment, consisting of 25 nodes distributed across 4 public cloud providers, with different hardware configurations and geographic location, very similar to that found in companies that use this kind of service. An exclusive validation was also carried out to metrify the performance of the scheduling process, in order to analyze the differences in time spent between the default scheduler and the proposed one, under the same conditions and workload |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-05-03T17:26:17Z |
dc.date.issued.fl_str_mv |
2022-02-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/5996 |
identifier_str_mv |
Santos , Luiz Fernando Altran dos. Orquestração personalizada de contêineres. 2022. 102 f. Dissertação( Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Cascavel, 2022. |
url |
https://tede.unioeste.br/handle/tede/5996 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-1040084669565072649 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica e Computação |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/5996/5/Luiz_Santos2022.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/5996/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/5996/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/5996/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/5996/1/license.txt |
bitstream.checksum.fl_str_mv |
f56f0b63cc769abe74d749125c640ad1 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723456463503360 |