Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus

Detalhes bibliográficos
Autor(a) principal: Jacomini, Débora
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/4477
Resumo: Lignocellulosic residues generated in agroindustrial practices are the most abundant in nature and, currently, there is a world concerning about using them as raw material in the energy production, chemical compounds and food, since they are a great source of renewable organic matter. Biotechnology arises with innovative alternatives, through the enzymes use in the biodegradability of agroindustrial residues. Moreover, enzymes can also be applied in industrial bioprocesses, looking for conventional treatment’s optimization as in the biotreatment of denim. Caulobacter crescentus is a promising bacterium to the biotechnological exploration, due to the presence of seven genes that encode enzymes of xylanolytic complex involved in the lignocellulosic materials metabolism, being five genes of β-xylosidases and two genes of endoxylanases. The objective of this study was to clone, express and characterize biochemically the xynA2 gene, besides testing its xylanolytic action in the hydrolysis of the corn straw residue, and to the denim treatment. The xynA2 was amplified by PCR, cloned into the pUCBM21 cloning vector and subcloned into the pTrcHisA expression vector, which produced a protein with a histidine N-terminal tail. The recombinant xylanase was purified on nickel-sepharose resin, exhibiting a single protein band on the SDS-PAGE gel (43 kDa), with specific activity of 1 U.mg-1. The XynA2 was characterized with optimum alkaline pH (8) and optimum temperature (60 ºC), apart from being considered thermoresistant at 65 ºC and stable at alkaline pH. The C. crescentus enzyme presented predominant activity to the xylan beechwood 1 % substrate, however it does not have celullase function. This substrate specificity allows that the enzyme selectively removes hemicellulose´s components, making industrial processes cleaner and more profitable. Among the tested compounds with xylanolytic activity of XynA2, the DTT was the one that obtained the best result, because it decreased the enzyme´s KM from 21.49 to 5.78 mg.mL-1 and increased the Kcat/KM from 0.12 to 1.63 Us-1, improving the C. crescentus endoxylanase catalytic´s efficiency. Moreover, this enzyme is not inhibited in the presence of moderate concentrations of xylose (50 μmol.ml-1), suggesting that it may act on prolonged hydrolysis reactions since it is not repressed by its final product. XynA2 efficiently hydrolyzed the corn straw by liberating reducing sugars and XOS, that present potential for industrial application. XynA2 acted in jeans treatment, removing the hemicellulose remnants from the fabric, improving its esthetic and commercial properties. According to the literature to date, few xylanolytic alkali enzymes and thermophilic bacterial have been characterized. Therefore, this work contributed strongly to the study of xylanases, which can act in different industrial bioprocesses, such as those in the textile segment and those that use lignocellulosic residues as raw material.
id UNIOESTE-1_5b66512fd9083a316e0e4a17a76eab44
oai_identifier_str oai:tede.unioeste.br:tede/4477
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Simão , Rita de Cássia Garciahttp://lattes.cnpq.br/7967975885148688Arruda, Priscila Vaz dehttp://lattes.cnpq.br/1583339937667600Schaker, Patricia Dayane Carvalhohttp://lattes.cnpq.br/9674682418436293Sene , Lucianehttp://lattes.cnpq.br/2582084888410031Corrêa , Juliana Moçohttp://lattes.cnpq.br/8316590839872267http://lattes.cnpq.br/0808153078488417Jacomini, Débora2019-09-24T17:06:52Z2019-02-18JACOMINI, Débora. Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus. 2019. 90 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.http://tede.unioeste.br/handle/tede/4477Lignocellulosic residues generated in agroindustrial practices are the most abundant in nature and, currently, there is a world concerning about using them as raw material in the energy production, chemical compounds and food, since they are a great source of renewable organic matter. Biotechnology arises with innovative alternatives, through the enzymes use in the biodegradability of agroindustrial residues. Moreover, enzymes can also be applied in industrial bioprocesses, looking for conventional treatment’s optimization as in the biotreatment of denim. Caulobacter crescentus is a promising bacterium to the biotechnological exploration, due to the presence of seven genes that encode enzymes of xylanolytic complex involved in the lignocellulosic materials metabolism, being five genes of β-xylosidases and two genes of endoxylanases. The objective of this study was to clone, express and characterize biochemically the xynA2 gene, besides testing its xylanolytic action in the hydrolysis of the corn straw residue, and to the denim treatment. The xynA2 was amplified by PCR, cloned into the pUCBM21 cloning vector and subcloned into the pTrcHisA expression vector, which produced a protein with a histidine N-terminal tail. The recombinant xylanase was purified on nickel-sepharose resin, exhibiting a single protein band on the SDS-PAGE gel (43 kDa), with specific activity of 1 U.mg-1. The XynA2 was characterized with optimum alkaline pH (8) and optimum temperature (60 ºC), apart from being considered thermoresistant at 65 ºC and stable at alkaline pH. The C. crescentus enzyme presented predominant activity to the xylan beechwood 1 % substrate, however it does not have celullase function. This substrate specificity allows that the enzyme selectively removes hemicellulose´s components, making industrial processes cleaner and more profitable. Among the tested compounds with xylanolytic activity of XynA2, the DTT was the one that obtained the best result, because it decreased the enzyme´s KM from 21.49 to 5.78 mg.mL-1 and increased the Kcat/KM from 0.12 to 1.63 Us-1, improving the C. crescentus endoxylanase catalytic´s efficiency. Moreover, this enzyme is not inhibited in the presence of moderate concentrations of xylose (50 μmol.ml-1), suggesting that it may act on prolonged hydrolysis reactions since it is not repressed by its final product. XynA2 efficiently hydrolyzed the corn straw by liberating reducing sugars and XOS, that present potential for industrial application. XynA2 acted in jeans treatment, removing the hemicellulose remnants from the fabric, improving its esthetic and commercial properties. According to the literature to date, few xylanolytic alkali enzymes and thermophilic bacterial have been characterized. Therefore, this work contributed strongly to the study of xylanases, which can act in different industrial bioprocesses, such as those in the textile segment and those that use lignocellulosic residues as raw material.Resíduos lignocelulósicos, gerados em práticas agroindustriais, são os mais abundantes da natureza e, atualmente, há uma preocupação mundial para aproveitá-los como matériaprima na produção de energia, compostos químicos e alimentos, visto que são uma fonte abundante de matéria orgânica renovável. A biotecnologia surge com alternativas inovadoras, por meio da utilização de enzimas na biodegradabilidade de resíduos agroindustriais. Além disso, as enzimas também podem ser aplicadas em bioprocessos industriais, visando a uma otimização dos tratamentos convencionais, como no biotratamento de denim. Caulobacter crescentus é uma bactéria promissora para a exploração biotecnológica, pois apresenta sete genes que codificam enzimas do complexo xilanolítico, envolvidas no metabolismo de materiais lignocelulósicos, sendo cinco genes de b-xilosidases e dois de endoxilanases. O objetivo deste estudo foi clonar, expressar e caracterizar bioquimicamente o gene xynA2, que codifica a xilanase II ou XynA2, além de testar sua ação xilanolítica na hidrólise do resíduo palha de milho e no biotratamento do denim. O xynA2 foi amplificado por PCR, clonado no vetor de clonagem pUCBM21 e subclonado no vetor de expressão pTrcHisA, que produziu uma proteína com cauda de histidinas N-terminal. A xilanase recombinante XynA2 foi purificada em resina de níquelsepharose, exibindo uma única banda de proteína no gel SDS-PAGE (43 kDa), com atividade específica de 1 U.mg-1. A XynA2 foi caracterizada com pH ótimo alcalino (8) e temperatura ótima de 60 oC, além de ser considerada termorresistente a 65 oC e estável ao pH alcalino. A enzima de C. crescentus apresentou atividade predominante para o substrato xilana de beechwood 1 %, mas não tem função celulásica. Essa especificidade ao substrato permite à enzima que remova seletivamente os componentes da hemicelulose, tornando os processos industriais mais limpos e rentáveis. Dentre os compostos testados frente à atividade xilanolítica de XynA2, o DTT foi o que obteve o melhor resultado, pois diminuiu o KM da enzima de 21,49 para 5,78 mg.mL-1 e aumentou a Kcat/KM de 0,12 para 1,63 U.s-1, melhorando sua catálise. Além disso, essa enzima não é inibida na presença de concentrações moderadas de xilose (50 μmol.mL-1), sugerindo que possa atuar em reações de hidrólise prolongadas, pois não é reprimida por seu produto final. A XynA2 quebrou eficientemente a palha de milho, liberando açúcares redutores e XOS, que apresentam potencial para aplicações industriais. XynA2 também foi aplicada ao biotratamento do jeans, levando à diminuição de resquícios de hemicelulose do tecido e à melhora de suas propriedades estéticas e comerciais. Segundo a literatura, até o momento, poucas enzimas xilanolíticas alcalíficas e termofílicas bacterianas foram caracterizadas. Desse modo, este trabalho contribuiu fortemente para o estudo das xilanases, que podem atuar em diferentes bioprocessos industriais, como os do segmento têxtil e os que utilizam resíduos lignocelulósicos como matéria-prima.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2019-09-24T17:06:52Z No. of bitstreams: 2 Débora_Jacomini_2019.pdf: 8893895 bytes, checksum: e6bb9729c1bfbea3f4e0d934fd9c62b7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-09-24T17:06:52Z (GMT). No. of bitstreams: 2 Débora_Jacomini_2019.pdf: 8893895 bytes, checksum: e6bb9729c1bfbea3f4e0d934fd9c62b7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-02-18application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessDenimEndo-1,4-b-xilanaseProteína recombinanteLignoceluloseXilanaDenimEndo-1,4-β-xylanaseRecombinant proteinLignocelluloseXylanCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAConstrução, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentusConstruction, characterization and profile biotechnological of the xynA2 gene of Caulobacter crescentusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820159185445721588761555reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALDébora_Jacomini_2019.pdfDébora_Jacomini_2019.pdfapplication/pdf8893895http://tede.unioeste.br:8080/tede/bitstream/tede/4477/5/D%C3%A9bora_Jacomini_2019.pdfe6bb9729c1bfbea3f4e0d934fd9c62b7MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/4477/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4477/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4477/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/4477/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/44772019-09-24 14:06:52.39oai:tede.unioeste.br:tede/4477Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2019-09-24T17:06:52Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
dc.title.alternative.eng.fl_str_mv Construction, characterization and profile biotechnological of the xynA2 gene of Caulobacter crescentus
title Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
spellingShingle Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
Jacomini, Débora
Denim
Endo-1,4-b-xilanase
Proteína recombinante
Lignocelulose
Xilana
Denim
Endo-1,4-β-xylanase
Recombinant protein
Lignocellulose
Xylan
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
title_full Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
title_fullStr Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
title_full_unstemmed Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
title_sort Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus
author Jacomini, Débora
author_facet Jacomini, Débora
author_role author
dc.contributor.advisor1.fl_str_mv Simão , Rita de Cássia Garcia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7967975885148688
dc.contributor.referee1.fl_str_mv Arruda, Priscila Vaz de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1583339937667600
dc.contributor.referee2.fl_str_mv Schaker, Patricia Dayane Carvalho
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/9674682418436293
dc.contributor.referee3.fl_str_mv Sene , Luciane
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2582084888410031
dc.contributor.referee4.fl_str_mv Corrêa , Juliana Moço
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8316590839872267
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0808153078488417
dc.contributor.author.fl_str_mv Jacomini, Débora
contributor_str_mv Simão , Rita de Cássia Garcia
Arruda, Priscila Vaz de
Schaker, Patricia Dayane Carvalho
Sene , Luciane
Corrêa , Juliana Moço
dc.subject.por.fl_str_mv Denim
Endo-1,4-b-xilanase
Proteína recombinante
Lignocelulose
Xilana
topic Denim
Endo-1,4-b-xilanase
Proteína recombinante
Lignocelulose
Xilana
Denim
Endo-1,4-β-xylanase
Recombinant protein
Lignocellulose
Xylan
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Denim
Endo-1,4-β-xylanase
Recombinant protein
Lignocellulose
Xylan
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Lignocellulosic residues generated in agroindustrial practices are the most abundant in nature and, currently, there is a world concerning about using them as raw material in the energy production, chemical compounds and food, since they are a great source of renewable organic matter. Biotechnology arises with innovative alternatives, through the enzymes use in the biodegradability of agroindustrial residues. Moreover, enzymes can also be applied in industrial bioprocesses, looking for conventional treatment’s optimization as in the biotreatment of denim. Caulobacter crescentus is a promising bacterium to the biotechnological exploration, due to the presence of seven genes that encode enzymes of xylanolytic complex involved in the lignocellulosic materials metabolism, being five genes of β-xylosidases and two genes of endoxylanases. The objective of this study was to clone, express and characterize biochemically the xynA2 gene, besides testing its xylanolytic action in the hydrolysis of the corn straw residue, and to the denim treatment. The xynA2 was amplified by PCR, cloned into the pUCBM21 cloning vector and subcloned into the pTrcHisA expression vector, which produced a protein with a histidine N-terminal tail. The recombinant xylanase was purified on nickel-sepharose resin, exhibiting a single protein band on the SDS-PAGE gel (43 kDa), with specific activity of 1 U.mg-1. The XynA2 was characterized with optimum alkaline pH (8) and optimum temperature (60 ºC), apart from being considered thermoresistant at 65 ºC and stable at alkaline pH. The C. crescentus enzyme presented predominant activity to the xylan beechwood 1 % substrate, however it does not have celullase function. This substrate specificity allows that the enzyme selectively removes hemicellulose´s components, making industrial processes cleaner and more profitable. Among the tested compounds with xylanolytic activity of XynA2, the DTT was the one that obtained the best result, because it decreased the enzyme´s KM from 21.49 to 5.78 mg.mL-1 and increased the Kcat/KM from 0.12 to 1.63 Us-1, improving the C. crescentus endoxylanase catalytic´s efficiency. Moreover, this enzyme is not inhibited in the presence of moderate concentrations of xylose (50 μmol.ml-1), suggesting that it may act on prolonged hydrolysis reactions since it is not repressed by its final product. XynA2 efficiently hydrolyzed the corn straw by liberating reducing sugars and XOS, that present potential for industrial application. XynA2 acted in jeans treatment, removing the hemicellulose remnants from the fabric, improving its esthetic and commercial properties. According to the literature to date, few xylanolytic alkali enzymes and thermophilic bacterial have been characterized. Therefore, this work contributed strongly to the study of xylanases, which can act in different industrial bioprocesses, such as those in the textile segment and those that use lignocellulosic residues as raw material.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-24T17:06:52Z
dc.date.issued.fl_str_mv 2019-02-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JACOMINI, Débora. Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus. 2019. 90 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/4477
identifier_str_mv JACOMINI, Débora. Construção, caracterização e perfil biotecnológico do gene xynA2 de Caulobacter crescentus. 2019. 90 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.
url http://tede.unioeste.br/handle/tede/4477
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/4477/5/D%C3%A9bora_Jacomini_2019.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4477/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/4477/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/4477/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4477/1/license.txt
bitstream.checksum.fl_str_mv e6bb9729c1bfbea3f4e0d934fd9c62b7
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723417131417600