Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/6338 |
Resumo: | Determining the spatial variability of soil and plant attributes is critical for farmland management. This practice requires that an appropriate sample planning be carried out in order to collect as few georeferenced samples as possible, with a view to maintaining sampling quality and saving financial and operational resources. Furthermore, geostatistical studies involving the spatial distribution of stochastic processes, in which observations are georeferenced, may show spatial structures that are not totally independent between the attributes. In these cases, it is recommended to calculate the association between the variables by resorting to a bivariate spatial correlation metric, in addition to utilizing a bivariate geostatistical model. Therefore, in the first scientific paper of this research, the bivariate spatial correlation was analyzed considering variables with different structures of spatial dependence and, for this, the bivariate Lee index was calculated. The results showed that the radius of spatial dependence common to both variables was the parameter that most influenced the Lee index value, whereas the higher the value of this parameter, the greater the bivariate spatial correlation. Subsequently, in the second paper, based on the assumption of the existence of spatial correlation between pairs of variables, the study aimed to redimension the sample size by calculating the bivariate effective sample size (ESSbi), utilizing the bivariate Gaussian common component model (BGCCM). This is because most of the proposals in the literature for the ESSbi adopt alternatives in their methodologies that aim to avoid the usage of a spatial correlation structure between the variables or consider the bivariate coregionalization model (BCRM). The difference is that in the BGCCM structure, in addition to having a common Gaussian random field shared by the pair of variables, there is also a Gaussian random field associated with each variable individually. Whilst in BCRM, the individual spatial correlation structure of one of the variables is necessarily disregarded from the model. In order to verify the theoretical feasibility of the ESSbi proposal, all properties that affect the univariate methodology were verified for the bivariate one, performing simulation studies or algebraically. The ESSbi was also applied to a real data set of organic matter (OM) and sum of bases (SB), collected in an agricultural area with soybean plantation, in which it was found that 60% of the sample observations of the OM-SB pair contained spatially duplicated information. Moreover, the sample redimensioning obtained for the real data set proved to be feasible in terms of the quality obtained in the spatial prediction. |
id |
UNIOESTE-1_71adf822150969963ad433e6cbf0b760 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/6338 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Bastiani, Fernanda Dehttp://lattes.cnpq.br/5519064508209103Cima, Elizabeth Gironhttp://lattes.cnpq.br/6425282643235095Nava, Daniela Trentinhttp://lattes.cnpq.br/6681448607094595http://lattes.cnpq.br/1085422685501012Dal' Canton, Letícia Ellen2022-12-08T14:01:22Z2022-08-29Dal' Canton, Letícia Ellen. Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo. 2022. 88 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.https://tede.unioeste.br/handle/tede/6338Determining the spatial variability of soil and plant attributes is critical for farmland management. This practice requires that an appropriate sample planning be carried out in order to collect as few georeferenced samples as possible, with a view to maintaining sampling quality and saving financial and operational resources. Furthermore, geostatistical studies involving the spatial distribution of stochastic processes, in which observations are georeferenced, may show spatial structures that are not totally independent between the attributes. In these cases, it is recommended to calculate the association between the variables by resorting to a bivariate spatial correlation metric, in addition to utilizing a bivariate geostatistical model. Therefore, in the first scientific paper of this research, the bivariate spatial correlation was analyzed considering variables with different structures of spatial dependence and, for this, the bivariate Lee index was calculated. The results showed that the radius of spatial dependence common to both variables was the parameter that most influenced the Lee index value, whereas the higher the value of this parameter, the greater the bivariate spatial correlation. Subsequently, in the second paper, based on the assumption of the existence of spatial correlation between pairs of variables, the study aimed to redimension the sample size by calculating the bivariate effective sample size (ESSbi), utilizing the bivariate Gaussian common component model (BGCCM). This is because most of the proposals in the literature for the ESSbi adopt alternatives in their methodologies that aim to avoid the usage of a spatial correlation structure between the variables or consider the bivariate coregionalization model (BCRM). The difference is that in the BGCCM structure, in addition to having a common Gaussian random field shared by the pair of variables, there is also a Gaussian random field associated with each variable individually. Whilst in BCRM, the individual spatial correlation structure of one of the variables is necessarily disregarded from the model. In order to verify the theoretical feasibility of the ESSbi proposal, all properties that affect the univariate methodology were verified for the bivariate one, performing simulation studies or algebraically. The ESSbi was also applied to a real data set of organic matter (OM) and sum of bases (SB), collected in an agricultural area with soybean plantation, in which it was found that 60% of the sample observations of the OM-SB pair contained spatially duplicated information. Moreover, the sample redimensioning obtained for the real data set proved to be feasible in terms of the quality obtained in the spatial prediction.Determinar a variabilidade espacial de atributos do solo e da planta é fundamental para o gerenciamento de áreas agrícolas. Essa prática exige que seja realizado um planejamento amostral apropriado que oportunize coletar o menor número possível de amostras georreferenciadas, vislumbrando manter a qualidade na amostragem e poupar recursos financeiros e operacionais. Além disso, estudos geoestatísticos sobre a distribuição espacial de processos estocásticos, em que as observa- ções são georreferenciadas, podem evidenciar estruturas espaciais não totalmente independentes entre os atributos. Nesses casos, é recomendado calcular a associação entre as variáveis por meio de uma métrica de correlação espacial bivariada, além de utilizar um modelo geoestatístico bivariado. Sendo assim, no primeiro artigo deste trabalho foi analisada a correlação espacial bivariada, considerando variáveis com diferentes estruturas de dependência espacial, para tal, foi calculado o índice de Lee bivariado. Os resultados mostraram que o raio de dependência espacial comum a ambas às variáveis foi o parâmetro que mais influenciou o valor do índice de Lee, sendo que quanto maior o valor desse parâmetro mais elevada foi a correlação espacial bivariada. No segundo artigo, com base no pressuposto da existência de correlação espacial entre pares de variáveis, o estudo teve como objetivo redimensionar o tamanho amostral, a partir do cálculo do tamanho amostral efetivo bivariado (ESSbi), utilizando o modelo espacial Gaussiano bivariado com componente de correlação parcialmente comum (BGCCM). Porquanto, a maioria das propostas na literatura para o ESSbi utiliza alternativas em suas metodologias que visam evitar o uso de estrutura de correlação espacial entre as variáveis ou consideram o modelo espacial bivariado de corregionalização (BCRM). A diferença é que na estrutura do BGCCM, além da existência de um campo aleatório Gaussiano comum compartilhado pelo par de variáveis, existe também um campo aleatório Gaussiano associado à cada variável individualmente. Enquanto no BCRM, necessariamente, a estrutura de correlação espacial individual de uma das variáveis é desconsiderada do modelo. Para verificar a viabilidade teórica da proposta do ESSbi, todas as propriedades que incidem sobre a metodologia univariada foram verificadas para a bivariada, utilizando estudos de simulação ou de forma algébrica. O ESSbi também foi aplicado a um conjunto de dados reais de matéria orgânica (MO) e soma de bases (SB), coletados em uma área agrícola com plantio de soja, no qual se constatou que 60% das observações amostrais do par MO-SB continham informações espacialmente duplicadas. Além disso, o redimensionamento amostral obtido para o conjunto de dados reais se mostrou praticável, em termos da qualidade obtida na predição espacial.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2022-12-08T14:01:22Z No. of bitstreams: 2 Letícia_Dal' Canton2022.pdf: 3495330 bytes, checksum: 72b51f946e0cce24b1f0cece9d1801ad (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2022-12-08T14:01:22Z (GMT). No. of bitstreams: 2 Letícia_Dal' Canton2022.pdf: 3495330 bytes, checksum: 72b51f946e0cce24b1f0cece9d1801ad (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-08-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGeoestatísticaÍndice de LeeProcessos GaussianosRedução amostralSimulaçãoGeostatisticsLee indexGaussian processesSample reductionSimulationCIENCIAS AGRARIAS::ENGENHARIA AGRICOLACorrelação espacial bivariada para o redimensionamento do tamanho amostral efetivoBivariate spatial correlation for effective sample size redimensioninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLetícia_Dal' Canton2022.pdfLetícia_Dal' Canton2022.pdfapplication/pdf3495330http://tede.unioeste.br:8080/tede/bitstream/tede/6338/5/Let%C3%ADcia_Dal%27+Canton2022.pdf72b51f946e0cce24b1f0cece9d1801adMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/6338/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6338/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6338/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6338/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/63382023-01-30 09:49:00.751oai:tede.unioeste.br:tede/6338Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-01-30T12:49Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
dc.title.alternative.eng.fl_str_mv |
Bivariate spatial correlation for effective sample size redimensioning |
title |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
spellingShingle |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo Dal' Canton, Letícia Ellen Geoestatística Índice de Lee Processos Gaussianos Redução amostral Simulação Geostatistics Lee index Gaussian processes Sample reduction Simulation CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
title_full |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
title_fullStr |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
title_full_unstemmed |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
title_sort |
Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo |
author |
Dal' Canton, Letícia Ellen |
author_facet |
Dal' Canton, Letícia Ellen |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.advisor-co1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee1.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.referee2.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee3.fl_str_mv |
Bastiani, Fernanda De |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/5519064508209103 |
dc.contributor.referee4.fl_str_mv |
Cima, Elizabeth Giron |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/6425282643235095 |
dc.contributor.referee5.fl_str_mv |
Nava, Daniela Trentin |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/6681448607094595 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1085422685501012 |
dc.contributor.author.fl_str_mv |
Dal' Canton, Letícia Ellen |
contributor_str_mv |
Guedes, Luciana Pagliosa Carvalho Opazo, Miguel Angel Uribe Guedes, Luciana Pagliosa Carvalho Opazo, Miguel Angel Uribe Bastiani, Fernanda De Cima, Elizabeth Giron Nava, Daniela Trentin |
dc.subject.por.fl_str_mv |
Geoestatística Índice de Lee Processos Gaussianos Redução amostral Simulação |
topic |
Geoestatística Índice de Lee Processos Gaussianos Redução amostral Simulação Geostatistics Lee index Gaussian processes Sample reduction Simulation CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Geostatistics Lee index Gaussian processes Sample reduction Simulation |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
Determining the spatial variability of soil and plant attributes is critical for farmland management. This practice requires that an appropriate sample planning be carried out in order to collect as few georeferenced samples as possible, with a view to maintaining sampling quality and saving financial and operational resources. Furthermore, geostatistical studies involving the spatial distribution of stochastic processes, in which observations are georeferenced, may show spatial structures that are not totally independent between the attributes. In these cases, it is recommended to calculate the association between the variables by resorting to a bivariate spatial correlation metric, in addition to utilizing a bivariate geostatistical model. Therefore, in the first scientific paper of this research, the bivariate spatial correlation was analyzed considering variables with different structures of spatial dependence and, for this, the bivariate Lee index was calculated. The results showed that the radius of spatial dependence common to both variables was the parameter that most influenced the Lee index value, whereas the higher the value of this parameter, the greater the bivariate spatial correlation. Subsequently, in the second paper, based on the assumption of the existence of spatial correlation between pairs of variables, the study aimed to redimension the sample size by calculating the bivariate effective sample size (ESSbi), utilizing the bivariate Gaussian common component model (BGCCM). This is because most of the proposals in the literature for the ESSbi adopt alternatives in their methodologies that aim to avoid the usage of a spatial correlation structure between the variables or consider the bivariate coregionalization model (BCRM). The difference is that in the BGCCM structure, in addition to having a common Gaussian random field shared by the pair of variables, there is also a Gaussian random field associated with each variable individually. Whilst in BCRM, the individual spatial correlation structure of one of the variables is necessarily disregarded from the model. In order to verify the theoretical feasibility of the ESSbi proposal, all properties that affect the univariate methodology were verified for the bivariate one, performing simulation studies or algebraically. The ESSbi was also applied to a real data set of organic matter (OM) and sum of bases (SB), collected in an agricultural area with soybean plantation, in which it was found that 60% of the sample observations of the OM-SB pair contained spatially duplicated information. Moreover, the sample redimensioning obtained for the real data set proved to be feasible in terms of the quality obtained in the spatial prediction. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-12-08T14:01:22Z |
dc.date.issued.fl_str_mv |
2022-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Dal' Canton, Letícia Ellen. Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo. 2022. 88 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/6338 |
identifier_str_mv |
Dal' Canton, Letícia Ellen. Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo. 2022. 88 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
url |
https://tede.unioeste.br/handle/tede/6338 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/6338/5/Let%C3%ADcia_Dal%27+Canton2022.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/6338/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/6338/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/6338/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/6338/1/license.txt |
bitstream.checksum.fl_str_mv |
72b51f946e0cce24b1f0cece9d1801ad 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723464059387904 |