Um estudo sobre estimação e predição em modelos geoestatísticos bivariados

Detalhes bibliográficos
Autor(a) principal: Fonseca, Bruno Henrique Fernandes
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13042009-165056/
Resumo: Os modelos geoestatísticos bivariados denem funções aleatórias para dois processos estocásticos com localizações espaciais conhecidas. Pode-se adotar a suposição da existência de um campo aleatório gaussiano latente para cada variável aleatória. A suposição de gaussianidade do processo latente é conveniente para inferências sobre parâmetros do modelo e para obtenção de predições espaciais, uma vez que a distribuição de probabilidade conjunta para um conjunto de pontos do processo latente é também gaussiana. A matriz de covariância dessa distribuição deve ser positiva denida e possuir a estrutura de variabilidade espacial entre e dentre os atributos. Gelfand et al. (2004) e Diggle e Ribeiro Jr. (2007) propuseram estratégias para estruturar essa matriz, porém não existem muitos relatos sobre o uso e avaliações comparativas entre essas abordagens. Neste trabalho foi conduzido um estudo de simulação de modelos geoestatísticos bivariados em conjunto com estimação por máxima verossimilhança e krigagem ordinária, sob diferentes congurações amostrais de localizações espaciais. Também foram utilizados dados provenientes da análise de solo de uma propriedade agrícola com 51,8ha de área, onde foram amostradas 67 localizações georeferenciadas. Foram utilizados os valores mensurados de pH e da saturação por bases do solo, que foram submetidas à análise descritiva espacial, modelagens geoestatísticas univariadas, bivariadas e predições espaciais. Para vericar vantagens quanto à adoção de modelos univariados ou bivariados, a amostra da saturação por bases, que possui coleta mais dispendiosa, foi dividida em uma subamostra de modelagem e uma subamostra de controle. A primeira foi utilizada para fazer a modelagem geoestatística e a segunda foi utilizada para comparar as precisões das predições espaciais nas localizações omitidas no processo de modelagem.
id USP_c6f04ca63f1fee7f8f7157ba8eeff2c0
oai_identifier_str oai:teses.usp.br:tde-13042009-165056
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Um estudo sobre estimação e predição em modelos geoestatísticos bivariadosA study on estimation and prediction in bivariate geostatistical modelsCampos aleatóriosGaussian processesGeoestatísticaGeostatisticLikelihood.Processos gaussianosRandom FieldsSimulação (Estatística)Simulation (Statistic)Verossimilhança.Os modelos geoestatísticos bivariados denem funções aleatórias para dois processos estocásticos com localizações espaciais conhecidas. Pode-se adotar a suposição da existência de um campo aleatório gaussiano latente para cada variável aleatória. A suposição de gaussianidade do processo latente é conveniente para inferências sobre parâmetros do modelo e para obtenção de predições espaciais, uma vez que a distribuição de probabilidade conjunta para um conjunto de pontos do processo latente é também gaussiana. A matriz de covariância dessa distribuição deve ser positiva denida e possuir a estrutura de variabilidade espacial entre e dentre os atributos. Gelfand et al. (2004) e Diggle e Ribeiro Jr. (2007) propuseram estratégias para estruturar essa matriz, porém não existem muitos relatos sobre o uso e avaliações comparativas entre essas abordagens. Neste trabalho foi conduzido um estudo de simulação de modelos geoestatísticos bivariados em conjunto com estimação por máxima verossimilhança e krigagem ordinária, sob diferentes congurações amostrais de localizações espaciais. Também foram utilizados dados provenientes da análise de solo de uma propriedade agrícola com 51,8ha de área, onde foram amostradas 67 localizações georeferenciadas. Foram utilizados os valores mensurados de pH e da saturação por bases do solo, que foram submetidas à análise descritiva espacial, modelagens geoestatísticas univariadas, bivariadas e predições espaciais. Para vericar vantagens quanto à adoção de modelos univariados ou bivariados, a amostra da saturação por bases, que possui coleta mais dispendiosa, foi dividida em uma subamostra de modelagem e uma subamostra de controle. A primeira foi utilizada para fazer a modelagem geoestatística e a segunda foi utilizada para comparar as precisões das predições espaciais nas localizações omitidas no processo de modelagem.Bivariate geostatistical models dene random functions for two stochastic processes with known spatial locations. Existence of a Gaussian random elds can be assumed for each latent random variable. This Gaussianity assumption for the latent process is a convenient one for the inferences on the model parameters and for spatial predictions once the joint distribution for a set of points is multivariate normal. The covariance matrix of this distribution should be positivede nite and to have the spatial variability structure between and among the attributes. Gelfand et al. (2004) and Diggle e Ribeiro Jr. (2007) suggested strategies for structuring this matrix, however there are few reports on comparing approaches. This work reports on a simulation study of bivariate models together with maximum likelihood estimators and spatial prediction under dierent sets of sampling locations space. Soil sample data from a eld with 51.8 hectares is also analyzed with the two soil attributes observed at 67 spatial locations. Data on pH and base saturation were submitted to spatial descriptive analysis, univariate and bivariate modeling and spatial prediction. To check for advantages of the adoption of univariate or bivariate models, the sample of the more expensive variable was divided into a modeling and testing subsamples. The rst was used to t geostatistical models, and the second was used to compare the spatial prediction precisions in the locations not used in the modeling process.Biblioteca Digitais de Teses e Dissertações da USPRibeiro Junior, Paulo JustinianoFonseca, Bruno Henrique Fernandes2009-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-13042009-165056/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-13042009-165056Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
A study on estimation and prediction in bivariate geostatistical models
title Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
spellingShingle Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
Fonseca, Bruno Henrique Fernandes
Campos aleatórios
Gaussian processes
Geoestatística
Geostatistic
Likelihood.
Processos gaussianos
Random Fields
Simulação (Estatística)
Simulation (Statistic)
Verossimilhança.
title_short Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
title_full Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
title_fullStr Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
title_full_unstemmed Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
title_sort Um estudo sobre estimação e predição em modelos geoestatísticos bivariados
author Fonseca, Bruno Henrique Fernandes
author_facet Fonseca, Bruno Henrique Fernandes
author_role author
dc.contributor.none.fl_str_mv Ribeiro Junior, Paulo Justiniano
dc.contributor.author.fl_str_mv Fonseca, Bruno Henrique Fernandes
dc.subject.por.fl_str_mv Campos aleatórios
Gaussian processes
Geoestatística
Geostatistic
Likelihood.
Processos gaussianos
Random Fields
Simulação (Estatística)
Simulation (Statistic)
Verossimilhança.
topic Campos aleatórios
Gaussian processes
Geoestatística
Geostatistic
Likelihood.
Processos gaussianos
Random Fields
Simulação (Estatística)
Simulation (Statistic)
Verossimilhança.
description Os modelos geoestatísticos bivariados denem funções aleatórias para dois processos estocásticos com localizações espaciais conhecidas. Pode-se adotar a suposição da existência de um campo aleatório gaussiano latente para cada variável aleatória. A suposição de gaussianidade do processo latente é conveniente para inferências sobre parâmetros do modelo e para obtenção de predições espaciais, uma vez que a distribuição de probabilidade conjunta para um conjunto de pontos do processo latente é também gaussiana. A matriz de covariância dessa distribuição deve ser positiva denida e possuir a estrutura de variabilidade espacial entre e dentre os atributos. Gelfand et al. (2004) e Diggle e Ribeiro Jr. (2007) propuseram estratégias para estruturar essa matriz, porém não existem muitos relatos sobre o uso e avaliações comparativas entre essas abordagens. Neste trabalho foi conduzido um estudo de simulação de modelos geoestatísticos bivariados em conjunto com estimação por máxima verossimilhança e krigagem ordinária, sob diferentes congurações amostrais de localizações espaciais. Também foram utilizados dados provenientes da análise de solo de uma propriedade agrícola com 51,8ha de área, onde foram amostradas 67 localizações georeferenciadas. Foram utilizados os valores mensurados de pH e da saturação por bases do solo, que foram submetidas à análise descritiva espacial, modelagens geoestatísticas univariadas, bivariadas e predições espaciais. Para vericar vantagens quanto à adoção de modelos univariados ou bivariados, a amostra da saturação por bases, que possui coleta mais dispendiosa, foi dividida em uma subamostra de modelagem e uma subamostra de controle. A primeira foi utilizada para fazer a modelagem geoestatística e a segunda foi utilizada para comparar as precisões das predições espaciais nas localizações omitidas no processo de modelagem.
publishDate 2009
dc.date.none.fl_str_mv 2009-03-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13042009-165056/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13042009-165056/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257006811906048