Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/6699 |
Resumo: | An efficient way to locate cultivated areas is through remote sensing tools. Similarly, locating available storage units (SUs) in production areas quickly and without the need for georeferencing in the field is possible. However, this tool has limitations in calculating the static storage capacity (SSC) and dynamic storage capacity (DSC) required to study SUs. The general objective of this work was to map by satellite images the agricultural production area (soybean and corn), geolocate the distribution of storage units (SUs), estimate their static storage capacity (SSC) and dynamic storage capacity (DSC) in the Department of Alto Paraná, in Paraguay, and, finally, identify the regions with areas without storage coverage to install new SUs to meet the production of the Department. The study area for this experiment was the Department of Alto Paraná, located between the parallels 24 ° 30 ‘and 26 ° 15’ south latitude and the meridians 54 ° 20 ‘and 55 ° 20’ west longitude. The Google Earth Engine (GEE) platform was considered, using Sentinel-2 and SRTM (Shuttle Radar Topography Mission) multispectral images for the 2019/20 crop. For the location of the storage units, QGIS software was used, with Google Hybrid, ERSI, and Bing satellite images. For vertical silos, it was necessary to know each SU’s height (h). For this, mathematical modeling was performed using SSC, height and diameter data for some SUs measured in the field. However, since there was little data collected, the catalogs of the brands of silos that are built in Paraguay (brands such as Kepler Weber, Comil, GSI, Cash and Carry, and Consilos) were also used. To calculate the Dynamic Storage Capacity (DSC), the rotation factor of 1.5 of the SSC per SUs was used. Finally, to identify the areas without storage coverage and to define possible regions for installing new SUs, it was necessary to use production maps in raster format, together with the location information of the SUs with their respective information on the SSC. With this information, it was possible to determine new locations in the Department with a deficit of SUs, but agricultural areas exist. The generation of maps of agricultural crops in Alto Paraná, with the Google Earth Engine (GEE) platform, using Sentinel-2 images, allowed the identification of the planted area and the estimation of production for the 22 municipalities within the Department. Notably, this data is not available on government websites dedicated to monitoring the agricultural sector. It was possible to identify 688,683 ha of soybeans and 118,893 ha of corn throughout the Department. The municipalities with the largest planted area were Itakyry for soybeans, Yguazu, for summer corn, and Minga Porá, for winter corn for the 2019/20 crop. It was possible to geolocate the 187 SUs in the Department and the SSC and DSC estimates, totaling over 2.6 million tons and over 3.8 million tons distributed across the Department. These figures were also calculated for the 22 municipalities that make up the Department. This differentiation by the municipality is crucial because government institutions publish no figures on the subject for the different municipalities. Also, areas with agricultural production were found but without SUs (areas not included). Thus, they are potential sites for installing new SUs, especially in Itakyry, which had an estimated production of more than 300 thousand tons in this harvest year but with an SSC of only 49 thousand tons, showing an evident deficiency of SUs. |
id |
UNIOESTE-1_79c48ba0e19bd0027eb66b0f0bb307ba |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/6699 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Johann, Jerry AdrianiOpazo, Miguel Angel UribeJohann, Jerry AdrianiGuedes, Luciana Pagliosa CarvalhoAcosta, Juan José Bonninhttp://lattes.cnpq.br/4036185648994829Díaz, Sergio Manuel Chamorro2023-06-23T12:34:24Z2023-02-10Díaz, Sergio Manuel Chamorro. Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai. 2023.73 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6699An efficient way to locate cultivated areas is through remote sensing tools. Similarly, locating available storage units (SUs) in production areas quickly and without the need for georeferencing in the field is possible. However, this tool has limitations in calculating the static storage capacity (SSC) and dynamic storage capacity (DSC) required to study SUs. The general objective of this work was to map by satellite images the agricultural production area (soybean and corn), geolocate the distribution of storage units (SUs), estimate their static storage capacity (SSC) and dynamic storage capacity (DSC) in the Department of Alto Paraná, in Paraguay, and, finally, identify the regions with areas without storage coverage to install new SUs to meet the production of the Department. The study area for this experiment was the Department of Alto Paraná, located between the parallels 24 ° 30 ‘and 26 ° 15’ south latitude and the meridians 54 ° 20 ‘and 55 ° 20’ west longitude. The Google Earth Engine (GEE) platform was considered, using Sentinel-2 and SRTM (Shuttle Radar Topography Mission) multispectral images for the 2019/20 crop. For the location of the storage units, QGIS software was used, with Google Hybrid, ERSI, and Bing satellite images. For vertical silos, it was necessary to know each SU’s height (h). For this, mathematical modeling was performed using SSC, height and diameter data for some SUs measured in the field. However, since there was little data collected, the catalogs of the brands of silos that are built in Paraguay (brands such as Kepler Weber, Comil, GSI, Cash and Carry, and Consilos) were also used. To calculate the Dynamic Storage Capacity (DSC), the rotation factor of 1.5 of the SSC per SUs was used. Finally, to identify the areas without storage coverage and to define possible regions for installing new SUs, it was necessary to use production maps in raster format, together with the location information of the SUs with their respective information on the SSC. With this information, it was possible to determine new locations in the Department with a deficit of SUs, but agricultural areas exist. The generation of maps of agricultural crops in Alto Paraná, with the Google Earth Engine (GEE) platform, using Sentinel-2 images, allowed the identification of the planted area and the estimation of production for the 22 municipalities within the Department. Notably, this data is not available on government websites dedicated to monitoring the agricultural sector. It was possible to identify 688,683 ha of soybeans and 118,893 ha of corn throughout the Department. The municipalities with the largest planted area were Itakyry for soybeans, Yguazu, for summer corn, and Minga Porá, for winter corn for the 2019/20 crop. It was possible to geolocate the 187 SUs in the Department and the SSC and DSC estimates, totaling over 2.6 million tons and over 3.8 million tons distributed across the Department. These figures were also calculated for the 22 municipalities that make up the Department. This differentiation by the municipality is crucial because government institutions publish no figures on the subject for the different municipalities. Also, areas with agricultural production were found but without SUs (areas not included). Thus, they are potential sites for installing new SUs, especially in Itakyry, which had an estimated production of more than 300 thousand tons in this harvest year but with an SSC of only 49 thousand tons, showing an evident deficiency of SUs.Uma maneira eficiente de localizar áreas cultivadas é por meio de ferramentas de sensoriamento remoto. Da mesma forma, é possível localizar as unidades de armazenamento (UAs) disponíveis nas áreas de produção de maneira rápida e sem a necessidade de georreferenciamento em campo. No entanto, essa ferramenta tem suas limitações para calcular a capacidade estática de armazenamento (CEA) e a capacidade dinâmica de armazenamento (CDA) necessária para o estudo de UAs. O objetivo geral deste trabalho foi mapear, por meio de imagens de satélite, a área de produção agrícola (soja e milho), geolocalizar a distribuição de unidades de armazenamento (UAs) estimando sua capacidade de armazenamento estática (CEA) e dinâmica (CDA), no Departamento de Alto Paraná, no Paraguai, e, por fim, identificar as regiões com áreas sem cobertura de armazenamento para fins de instalação de novas UAs que atendam à produção do Departamento. A área de estudo deste experimento foi o departamento de Alto Paraná Paraguai, localizado entre os paralelos 24 ° 30 'e 26 ° 15' de latitude sul, e os meridianos 54 ° 20 'e 55 ° 20' de longitude oeste. Foi considerada a plataforma Google Earth Engine (GEE), utilizando as imagens multiespectrais do Sentinel-2 e SRTM (Shuttle Radar Topography Mission) para a safra 2019/20. Para a localização das unidades de armazenamento, foi utilizado o software QGIS, com imagens de satélite Google Hybrid, ERSI e Bing. Para silos verticais, foi necessário conhecer a altura (h) para cada UA. Para isso, foi realizada uma modelagem matemática utilizando dados de CEA, altura e diâmetro de algumas UAs que foram medidas em campo. No entanto, como eram poucos dados coletados, também foram utilizados os catálogos das marcas de silos que são construídas no Paraguai (marcas como Kepler Weber, Comil, GSI, Cash and Carry e Consilos). Para o cálculo da Capacidade Dinâmica de Armazenamento (CDA), foi utilizado o fator de rotação de 1,5 do CEA por UAs. Finalmente, para identificar as áreas sem cobertura de armazenamento e definir possíveis regiões de instalação de novas UAs, foi necessário utilizar mapas de produção em formato raster, juntamente com as informações de localização das UAs com as respetivas informações sobre a CEA. Com essas informações, foi possível determinar novos locais no Departamento em que há déficit de UAs, mas existem áreas agrícolas. A geração de mapas de cultivos agrícolas no estado do Alto Paraná, com a plataforma Google Earth Engine, utilizando as imagens Sentinel-2, permitiu a identificação da área plantada, bem como a estimativa da produção para os 22 municípios dentro do Departamento. Destaca-se que esses dados não ficam disponíveis nas páginas do governo dedicadas ao monitoramento do setor agrícola. Foi possível identificar 688.683 ha de soja e 118.893 ha de milho no total em todo o Departamento. Os municípios com maior área plantada foram Itakyry, para soja, Yguazu, para milho, verão e Minga Porá, para milho inverno, para safra 2019/20. Foi possível a geolocalização das 187 UAs no Departamento, bem como a estimativa do CEA e CDA, totalizando mais de 2,6 milhões de toneladas e mais de 3,8 milhões de toneladas distribuídas pelo departamento. Esses valores também foram calculados para os 22 municípios que compõem o Departamento. Essa diferenciação por município é extremamente importante, pois não existem valores divulgados por instituições governamentais sobre o assunto para os diferentes municípios. Também, foram encontradas áreas com produção agrícola, mas sem a presença de UAs (áreas não contempladas). Sendo assim, são locais potenciais para a instalação de novas UAs, principalmente em Itakyry que teve produção estimada em mais de 300 mil toneladas nesse ano safra, porém, com CEA de apenas 49 mil toneladas, mostrando uma clara deficiência de UAsSubmitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-06-23T12:34:24Z No. of bitstreams: 2 Sergio_Diaz.2023.pdf: 4527352 bytes, checksum: 048c4d69a523a75be851bad3fb15d894 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2023-06-23T12:34:24Z (GMT). No. of bitstreams: 2 Sergio_Diaz.2023.pdf: 4527352 bytes, checksum: 048c4d69a523a75be851bad3fb15d894 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2023-02-10application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessGoogle Earth EngineSentinel-2SRTMModelagem estatísticaÁreas sem cobertura de armazenamentoGoogle Earth EngineSentinel-2SRTMStatistical modelingAreas without storage coveragSISTEMAS BIOLÓGICOS E AGROINDUSTRIAISMapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do ParaguaiMapping the area and grain storage units in Alto Paraná, Paraguayinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-53476924504160521296006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALSergio_Diaz.2023.pdfSergio_Diaz.2023.pdfapplication/pdf4527352http://tede.unioeste.br:8080/tede/bitstream/tede/6699/5/Sergio_Diaz.2023.pdf048c4d69a523a75be851bad3fb15d894MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/6699/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6699/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6699/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6699/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/66992023-06-23 09:34:24.635oai:tede.unioeste.br:tede/6699Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-06-23T12:34:24Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
dc.title.alternative.eng.fl_str_mv |
Mapping the area and grain storage units in Alto Paraná, Paraguay |
title |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
spellingShingle |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai Díaz, Sergio Manuel Chamorro Google Earth Engine Sentinel-2 SRTM Modelagem estatística Áreas sem cobertura de armazenamento Google Earth Engine Sentinel-2 SRTM Statistical modeling Areas without storage coverag SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
title_short |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
title_full |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
title_fullStr |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
title_full_unstemmed |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
title_sort |
Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai |
author |
Díaz, Sergio Manuel Chamorro |
author_facet |
Díaz, Sergio Manuel Chamorro |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.advisor-co1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee2.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.referee3.fl_str_mv |
Acosta, Juan José Bonnin |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4036185648994829 |
dc.contributor.author.fl_str_mv |
Díaz, Sergio Manuel Chamorro |
contributor_str_mv |
Johann, Jerry Adriani Opazo, Miguel Angel Uribe Johann, Jerry Adriani Guedes, Luciana Pagliosa Carvalho Acosta, Juan José Bonnin |
dc.subject.por.fl_str_mv |
Google Earth Engine Sentinel-2 SRTM Modelagem estatística Áreas sem cobertura de armazenamento |
topic |
Google Earth Engine Sentinel-2 SRTM Modelagem estatística Áreas sem cobertura de armazenamento Google Earth Engine Sentinel-2 SRTM Statistical modeling Areas without storage coverag SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
dc.subject.eng.fl_str_mv |
Google Earth Engine Sentinel-2 SRTM Statistical modeling Areas without storage coverag |
dc.subject.cnpq.fl_str_mv |
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
description |
An efficient way to locate cultivated areas is through remote sensing tools. Similarly, locating available storage units (SUs) in production areas quickly and without the need for georeferencing in the field is possible. However, this tool has limitations in calculating the static storage capacity (SSC) and dynamic storage capacity (DSC) required to study SUs. The general objective of this work was to map by satellite images the agricultural production area (soybean and corn), geolocate the distribution of storage units (SUs), estimate their static storage capacity (SSC) and dynamic storage capacity (DSC) in the Department of Alto Paraná, in Paraguay, and, finally, identify the regions with areas without storage coverage to install new SUs to meet the production of the Department. The study area for this experiment was the Department of Alto Paraná, located between the parallels 24 ° 30 ‘and 26 ° 15’ south latitude and the meridians 54 ° 20 ‘and 55 ° 20’ west longitude. The Google Earth Engine (GEE) platform was considered, using Sentinel-2 and SRTM (Shuttle Radar Topography Mission) multispectral images for the 2019/20 crop. For the location of the storage units, QGIS software was used, with Google Hybrid, ERSI, and Bing satellite images. For vertical silos, it was necessary to know each SU’s height (h). For this, mathematical modeling was performed using SSC, height and diameter data for some SUs measured in the field. However, since there was little data collected, the catalogs of the brands of silos that are built in Paraguay (brands such as Kepler Weber, Comil, GSI, Cash and Carry, and Consilos) were also used. To calculate the Dynamic Storage Capacity (DSC), the rotation factor of 1.5 of the SSC per SUs was used. Finally, to identify the areas without storage coverage and to define possible regions for installing new SUs, it was necessary to use production maps in raster format, together with the location information of the SUs with their respective information on the SSC. With this information, it was possible to determine new locations in the Department with a deficit of SUs, but agricultural areas exist. The generation of maps of agricultural crops in Alto Paraná, with the Google Earth Engine (GEE) platform, using Sentinel-2 images, allowed the identification of the planted area and the estimation of production for the 22 municipalities within the Department. Notably, this data is not available on government websites dedicated to monitoring the agricultural sector. It was possible to identify 688,683 ha of soybeans and 118,893 ha of corn throughout the Department. The municipalities with the largest planted area were Itakyry for soybeans, Yguazu, for summer corn, and Minga Porá, for winter corn for the 2019/20 crop. It was possible to geolocate the 187 SUs in the Department and the SSC and DSC estimates, totaling over 2.6 million tons and over 3.8 million tons distributed across the Department. These figures were also calculated for the 22 municipalities that make up the Department. This differentiation by the municipality is crucial because government institutions publish no figures on the subject for the different municipalities. Also, areas with agricultural production were found but without SUs (areas not included). Thus, they are potential sites for installing new SUs, especially in Itakyry, which had an estimated production of more than 300 thousand tons in this harvest year but with an SSC of only 49 thousand tons, showing an evident deficiency of SUs. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-06-23T12:34:24Z |
dc.date.issued.fl_str_mv |
2023-02-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Díaz, Sergio Manuel Chamorro. Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai. 2023.73 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/6699 |
identifier_str_mv |
Díaz, Sergio Manuel Chamorro. Mapeamento de área e de unidades de armazenamento de grãos no Alto Paraná do Paraguai. 2023.73 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel. |
url |
https://tede.unioeste.br/handle/tede/6699 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/6699/5/Sergio_Diaz.2023.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/6699/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/6699/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/6699/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/6699/1/license.txt |
bitstream.checksum.fl_str_mv |
048c4d69a523a75be851bad3fb15d894 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723473745084416 |