Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná

Detalhes bibliográficos
Autor(a) principal: Mendes, Isaque de Souza
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/6933
Resumo: Global climate changes affect the spatial distribution of temperature at regional and local scales. Smart Farm tools assist in timely decision-making. However, data collection continuity is of paramount importance in understanding local-scale climatic dynamics, thus redundancy is fundamental for the continuity of data capture and filling in case of systemic failures. Orbital sensing data, as well as government stations distributed in the region of interest, can be used as redundancy tools for Smart Farming systems. Nonetheless, analyzing the spatial variability of temperature distribution can be limited in small and medium cultivation areas due to the low spatial or temporal resolution of orbital sensors. This study aimed to evaluate the correlation between daily average surface temperature resulting from 3 and 4 daily observations and the daily average air temperature collected by meteorological stations. It also aimed to merge, using the ESTARFM algorithm, and evaluate the use of synthetic surface temperature data images from MODIS – Terra and Aqua sensors and TIRS – Landsat 8 and 9 sensors. Additionally, the spatial distribution of publicly available stations in the Western Region of the State of Paraná was assessed. The images of daily average surface temperature resulting from 3 and 4 observations showed a strong correlation with the daily average air temperature, with a correlation coefficient rs of 0.92 for both observations. The model fit had an adjusted coefficient of determination R²adjusted of 0.85 for 3 observations and 0.86 for 4 observations, with RMSE values of 1.74 °C and 1.5 °C, respectively. The synthetic images of daily average surface temperature had a correlation coefficient rs of 0.69 and an adjusted coefficient of determination R²adjusted of 0.59. There was an overestimation of average surface temperature values in synthetic images, and cloud cover posed an obstacle to the generation of larger volumes of data. The evaluation of meteorological stations was carried out based on data interpolation, and when compared to the modeled spatial temperature distribution for air temperature, they showed errors mainly in urban clusters, with correlation coefficients rs of 0.42 in summer, 0.53 in autumn, 0.51 in winter, and 0.63 in spring. However, when compared to stations installed in agricultural areas with environmental characteristics similar to the station locations, no statistical differences in data were observed, and the correlation coefficient rs was 0.93.
id UNIOESTE-1_d7c82520fc723cf76b952a9718a44859
oai_identifier_str oai:tede.unioeste.br:tede/6933
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Mercante, EriveltoSanches, Ieda Del’ArcoIeda Del’Arco SanchesMercante, EriveltoAntunes, João Francisco GonçalvesPrior, MaritaneHachisuca, Antonio Marcos MassaoCoelho, Silvia Renata Machadohttp://lattes.cnpq.br/8850579406241414Mendes, Isaque de Souza2023-12-05T17:53:15Z2023-08-18Mendes, Isaque de Souza. Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná. 2023. 77 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6933Global climate changes affect the spatial distribution of temperature at regional and local scales. Smart Farm tools assist in timely decision-making. However, data collection continuity is of paramount importance in understanding local-scale climatic dynamics, thus redundancy is fundamental for the continuity of data capture and filling in case of systemic failures. Orbital sensing data, as well as government stations distributed in the region of interest, can be used as redundancy tools for Smart Farming systems. Nonetheless, analyzing the spatial variability of temperature distribution can be limited in small and medium cultivation areas due to the low spatial or temporal resolution of orbital sensors. This study aimed to evaluate the correlation between daily average surface temperature resulting from 3 and 4 daily observations and the daily average air temperature collected by meteorological stations. It also aimed to merge, using the ESTARFM algorithm, and evaluate the use of synthetic surface temperature data images from MODIS – Terra and Aqua sensors and TIRS – Landsat 8 and 9 sensors. Additionally, the spatial distribution of publicly available stations in the Western Region of the State of Paraná was assessed. The images of daily average surface temperature resulting from 3 and 4 observations showed a strong correlation with the daily average air temperature, with a correlation coefficient rs of 0.92 for both observations. The model fit had an adjusted coefficient of determination R²adjusted of 0.85 for 3 observations and 0.86 for 4 observations, with RMSE values of 1.74 °C and 1.5 °C, respectively. The synthetic images of daily average surface temperature had a correlation coefficient rs of 0.69 and an adjusted coefficient of determination R²adjusted of 0.59. There was an overestimation of average surface temperature values in synthetic images, and cloud cover posed an obstacle to the generation of larger volumes of data. The evaluation of meteorological stations was carried out based on data interpolation, and when compared to the modeled spatial temperature distribution for air temperature, they showed errors mainly in urban clusters, with correlation coefficients rs of 0.42 in summer, 0.53 in autumn, 0.51 in winter, and 0.63 in spring. However, when compared to stations installed in agricultural areas with environmental characteristics similar to the station locations, no statistical differences in data were observed, and the correlation coefficient rs was 0.93.As alterações climáticas globais afetam a distribuição espacial de temperatura em escala regional e local. As ferramentas de Smart Farm auxiliam a tomada de decisão em tempo hábil. Entretanto, a continuidade da coleta de dados é de suma importância para entender a dinâmica climática em escala local, portanto a redundância é fundamental para continuidade da captura e preenchimento de dados em caso de falhas sistêmicas. Dados de sensoriamento orbital, bem como estações governamentais distribuídas na região de interesse podem ser utilizadas como ferramentas de redundância dos sistemas de Smart Farming. Entretanto, analisar a variabilidade espacial da distribuição de temperatura pode ser limitada em pequenas e médias áreas de cultivo, devido à baixa resolução espacial ou baixa resolução temporal de sensores orbitais. Este trabalho objetivou avaliar a correlação entre temperatura média diária de superfície resultante de 3 e 4 observações diárias e temperatura média do ar coletada por estações meteorológicas, bem como fusionar, utilizando o algoritmo ESTAFM, e avaliar a utilização de imagens sintéticas de dados de temperatura de superfície dos sensores MODIS – Terra e Aqua e TIRS – Landsat 8 e 9. Também foi avaliada a distribuição espacial das estações públicas disponíveis na região Oeste do Estado do Paraná. As imagens de temperatura média da superfície resultantes de 3 e 4 observações apresentaram forte correlação com a temperatura média diária do ar, com coeficiente de correlação rs de 0,92 para ambas as observações. O ajuste de modelo apresentou coeficiente de determinação R²ajustado de 0,85 para 3 observações e 0,86 para 4 observações; o RMSE foi de 1,74 °C e 1,5 °C respectivamente. As imagens sintéticas de temperatura média diária de superfície apresentaram coeficiente de correlação rs de 0,69 e coeficiente de determinação R²ajustado de 0,59. Houve superestimativa dos valores médios de temperatura de superfície nas imagens sintéticas, e a cobertura de nuvens foi um empecilho para a geração de maiores volumes de dados. A avaliação das estações meteorológicas foi realizada com base em interpolação de dados e estes, quando comparados à distribuição espacial de temperatura modelada para temperatura do ar, apresentaram erros principalmente em aglomerados urbanos, com coeficientes de correlação rs de 0,42 no verão, 0,53 no outono, 0,51 no inverno e 0,63 na primavera. Entretanto, quando comparados às estações instaladas em meio agrícola, com características ambientais semelhantes aos locais de instalação das estações, não apresentaram diferença estatística de dados e coeficiente de correlação rs de 0,93.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-12-05T17:53:15Z No. of bitstreams: 1 Isaque Mendes.pdf: 4323700 bytes, checksum: e88da4f13edaf15f427c72c65f6ce14e (MD5)Made available in DSpace on 2023-12-05T17:53:15Z (GMT). No. of bitstreams: 1 Isaque Mendes.pdf: 4323700 bytes, checksum: e88da4f13edaf15f427c72c65f6ce14e (MD5) Previous issue date: 2023-08-18Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessTemperatura de superfícieESTARFMInterpolaçãoEstações meteorológicasSurface temperatureESTARFMInterpolationMeteorological stationsSISTEMAS BIOLÓGICOS E AGROINDUSTRIAISFusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do ParanáSpatiotemporal fusion of thermal images and evaluation of the meteorological monitoring network in the western region of the state of Paraná.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-53476924504160521296006006002214374442868382015-2555911436985713659reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALIsaque Mendes.pdfIsaque Mendes.pdfapplication/pdf4323700http://tede.unioeste.br:8080/tede/bitstream/tede/6933/2/Isaque+Mendes.pdfe88da4f13edaf15f427c72c65f6ce14eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6933/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/69332024-01-08 09:22:48.402oai:tede.unioeste.br:tede/6933Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-01-08T12:22:48Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
dc.title.alternative.eng.fl_str_mv Spatiotemporal fusion of thermal images and evaluation of the meteorological monitoring network in the western region of the state of Paraná.
title Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
spellingShingle Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
Mendes, Isaque de Souza
Temperatura de superfície
ESTARFM
Interpolação
Estações meteorológicas
Surface temperature
ESTARFM
Interpolation
Meteorological stations
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
title_short Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
title_full Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
title_fullStr Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
title_full_unstemmed Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
title_sort Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná
author Mendes, Isaque de Souza
author_facet Mendes, Isaque de Souza
author_role author
dc.contributor.advisor1.fl_str_mv Mercante, Erivelto
dc.contributor.advisor-co1.fl_str_mv Sanches, Ieda Del’Arco
dc.contributor.advisor-co1Lattes.fl_str_mv Ieda Del’Arco Sanches
dc.contributor.referee1.fl_str_mv Mercante, Erivelto
dc.contributor.referee2.fl_str_mv Antunes, João Francisco Gonçalves
dc.contributor.referee3.fl_str_mv Prior, Maritane
dc.contributor.referee4.fl_str_mv Hachisuca, Antonio Marcos Massao
dc.contributor.referee5.fl_str_mv Coelho, Silvia Renata Machado
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8850579406241414
dc.contributor.author.fl_str_mv Mendes, Isaque de Souza
contributor_str_mv Mercante, Erivelto
Sanches, Ieda Del’Arco
Mercante, Erivelto
Antunes, João Francisco Gonçalves
Prior, Maritane
Hachisuca, Antonio Marcos Massao
Coelho, Silvia Renata Machado
dc.subject.por.fl_str_mv Temperatura de superfície
ESTARFM
Interpolação
Estações meteorológicas
topic Temperatura de superfície
ESTARFM
Interpolação
Estações meteorológicas
Surface temperature
ESTARFM
Interpolation
Meteorological stations
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
dc.subject.eng.fl_str_mv Surface temperature
ESTARFM
Interpolation
Meteorological stations
dc.subject.cnpq.fl_str_mv SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
description Global climate changes affect the spatial distribution of temperature at regional and local scales. Smart Farm tools assist in timely decision-making. However, data collection continuity is of paramount importance in understanding local-scale climatic dynamics, thus redundancy is fundamental for the continuity of data capture and filling in case of systemic failures. Orbital sensing data, as well as government stations distributed in the region of interest, can be used as redundancy tools for Smart Farming systems. Nonetheless, analyzing the spatial variability of temperature distribution can be limited in small and medium cultivation areas due to the low spatial or temporal resolution of orbital sensors. This study aimed to evaluate the correlation between daily average surface temperature resulting from 3 and 4 daily observations and the daily average air temperature collected by meteorological stations. It also aimed to merge, using the ESTARFM algorithm, and evaluate the use of synthetic surface temperature data images from MODIS – Terra and Aqua sensors and TIRS – Landsat 8 and 9 sensors. Additionally, the spatial distribution of publicly available stations in the Western Region of the State of Paraná was assessed. The images of daily average surface temperature resulting from 3 and 4 observations showed a strong correlation with the daily average air temperature, with a correlation coefficient rs of 0.92 for both observations. The model fit had an adjusted coefficient of determination R²adjusted of 0.85 for 3 observations and 0.86 for 4 observations, with RMSE values of 1.74 °C and 1.5 °C, respectively. The synthetic images of daily average surface temperature had a correlation coefficient rs of 0.69 and an adjusted coefficient of determination R²adjusted of 0.59. There was an overestimation of average surface temperature values in synthetic images, and cloud cover posed an obstacle to the generation of larger volumes of data. The evaluation of meteorological stations was carried out based on data interpolation, and when compared to the modeled spatial temperature distribution for air temperature, they showed errors mainly in urban clusters, with correlation coefficients rs of 0.42 in summer, 0.53 in autumn, 0.51 in winter, and 0.63 in spring. However, when compared to stations installed in agricultural areas with environmental characteristics similar to the station locations, no statistical differences in data were observed, and the correlation coefficient rs was 0.93.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-05T17:53:15Z
dc.date.issued.fl_str_mv 2023-08-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Mendes, Isaque de Souza. Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná. 2023. 77 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/6933
identifier_str_mv Mendes, Isaque de Souza. Fusão espaço-temporal de imagens termais e avaliação da rede de monitoramento meteorológico da região oeste do estado do Paraná. 2023. 77 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/6933
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/6933/2/Isaque+Mendes.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6933/1/license.txt
bitstream.checksum.fl_str_mv e88da4f13edaf15f427c72c65f6ce14e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723478841163776