Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.

Detalhes bibliográficos
Autor(a) principal: Malacarne, Gustavo Raí
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/7232
Resumo: This work presents the development and initial studies of an Application Programming Interface (API) for the Virtual Learning Environment (VLE) of AlfaCon, focused on preparing students for public service exams. The API, based on the Theory of Meaningful Learning (TML), Classical Test Theory (CTT), and Item Response Theory (IRT), makes study recommendations to students who opt for its use and commit to providing additional personal data and answers from simulated exams. This is part of a broader effort by the company to transition from the traditional VLE currently in use to an adaptive VLE, which makes content recommendations based on its duly cataloged Educational Objects and their didactic and operational characteristics. The indication pointed out by this research for AlfaCon to conduct such a transition, especially due to the scarcity of complete and adequate data related to students and the actions they and the Pedagogical Team (PT) perform in the VLE, is the use of the API, for a minimum period of time, so that stakeholders have more and better convictions about the specifics and needs regarding the requirements of the intended adaptive VLE. The API operates independently of AlfaCon’s current VLE, not interfering with the dynamics of ongoing courses but collecting necessary data. During a simulated exam for the Federal Highway Police (PRF) preparatory course, made available by AlfaCon at the end of 2023, a real-time test with the API was conducted with 89 volunteer students, enabling an evaluation involving CTT metrics and respondents’ prior knowledge, as predicted by TML, to identify areas of knowledge where they showed greater difficulties and other aspects. IRT contributed to identifying discrimination parameters, difficulty, and the chance of guessing correctly on the items of the simulated exam, enabling the creation of charts to enhance analyses made by the PT. The evaluations conducted with the tests related to these 89 students pointed out that the API effectively makes study recommendations and also provides a customized individual report, with intuitive infographics and analytical metrics, facilitating a better understanding of the individual evolutionary trajectory throughout the course. The company’s PT also receives feedback that identifies students’ progress during the course, assesses the effectiveness of the items included in the simulations, and quantifies a test’s aptitude in measuring respondents’ skills. Of the students who evaluated the report, 68.2% gave the highest score (5), while 22.7% and 9.1% assigned scores 4 and 3, respectively. Moreover, 95.2% perceived the recommendations as beneficial for understanding and improving their skills in the indicated areas, evidencing the positive impact of the report on their self-assessment and study planning.
id UNIOESTE-1_daa7d95f6186757d706b5f6a433ee79e
oai_identifier_str oai:tede.unioeste.br:tede/7232
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Rizzi, Claudia BrandeleroRizzi, Rogério LuisScheffel, Roberto MiltonNaves, Thiago Françahttp://lattes.cnpq.br/3642014638268689Malacarne, Gustavo Raí2024-05-29T15:09:17Z2024-02-29Malacarne, Gustavo Raí. Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful. 2024. 200 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/7232This work presents the development and initial studies of an Application Programming Interface (API) for the Virtual Learning Environment (VLE) of AlfaCon, focused on preparing students for public service exams. The API, based on the Theory of Meaningful Learning (TML), Classical Test Theory (CTT), and Item Response Theory (IRT), makes study recommendations to students who opt for its use and commit to providing additional personal data and answers from simulated exams. This is part of a broader effort by the company to transition from the traditional VLE currently in use to an adaptive VLE, which makes content recommendations based on its duly cataloged Educational Objects and their didactic and operational characteristics. The indication pointed out by this research for AlfaCon to conduct such a transition, especially due to the scarcity of complete and adequate data related to students and the actions they and the Pedagogical Team (PT) perform in the VLE, is the use of the API, for a minimum period of time, so that stakeholders have more and better convictions about the specifics and needs regarding the requirements of the intended adaptive VLE. The API operates independently of AlfaCon’s current VLE, not interfering with the dynamics of ongoing courses but collecting necessary data. During a simulated exam for the Federal Highway Police (PRF) preparatory course, made available by AlfaCon at the end of 2023, a real-time test with the API was conducted with 89 volunteer students, enabling an evaluation involving CTT metrics and respondents’ prior knowledge, as predicted by TML, to identify areas of knowledge where they showed greater difficulties and other aspects. IRT contributed to identifying discrimination parameters, difficulty, and the chance of guessing correctly on the items of the simulated exam, enabling the creation of charts to enhance analyses made by the PT. The evaluations conducted with the tests related to these 89 students pointed out that the API effectively makes study recommendations and also provides a customized individual report, with intuitive infographics and analytical metrics, facilitating a better understanding of the individual evolutionary trajectory throughout the course. The company’s PT also receives feedback that identifies students’ progress during the course, assesses the effectiveness of the items included in the simulations, and quantifies a test’s aptitude in measuring respondents’ skills. Of the students who evaluated the report, 68.2% gave the highest score (5), while 22.7% and 9.1% assigned scores 4 and 3, respectively. Moreover, 95.2% perceived the recommendations as beneficial for understanding and improving their skills in the indicated areas, evidencing the positive impact of the report on their self-assessment and study planning.Este trabalho apresenta o desenvolvimento e primeiros estudos com uma Interface de Programação de Aplicação (API) para o Ambiente Virtual de Aprendizagem (AVA) da empresa AlfaCon, focada na preparação de alunos para concursos públicos. A API, fundamentada na Teoria da Aprendizagem Significativa (TAS), Teoria Clássica dos Testes (TCT) e Teoria de Resposta ao Item (TRI), faz recomendações de estudos aos alunos que optam por sua utilização e se comprometem a fornecer dados pessoais complementares e gabaritos dos simulados realizados. Trata-se de parte de um esforço mais amplo da empresa para transitar do AVA tradicional atualmente utilizado, para um AVA adaptativo, que efetue recomendações de conteúdo, baseado em seus Objetos Educacionais devidamente catalogados e em suas características didáticas e operacionais. A indicação apontada por esta pesquisa para o AlfaCon para conduzir tal transição, especialmente devido à escassez de dados completos e adequados relativos aos alunos e as ações que eles e a Equipe Pedagógica (EP) realizam no AVA, é a utilização da API, por um período de tempo mínimo, para que os stakeholders detenham mais e melhores convicções a cerca das particularidades e necessidades quanto aos requisitos do AVA adaptativo pretendido. O funcionamento da API ocorre de maneira independente ao AVA atual do AlfaCon, não interferindo na dinâmica dos cursos em andamento, mas coletando dados que lhe são necessários. Durante um simulado do curso preparatório para a Polícia Rodoviária Federal (PRF), disponibilizado pelo AlfaCon no final de 2023, realizou-se um teste com a API em tempo real, com 89 alunos voluntários, viabilizando uma avaliação envolvendo métricas da TCT e conhecimentos prévios dos respondentes, conforme previsto pela TAS, para identificar áreas de conhecimento em que apresentaram maiores dificuldades e outros aspectos. A TRI contribuiu para identificar parâmetros de discriminação, dificuldade e chance de acertos ao acaso nos itens do simulado, viabilizando a criação de gráficos para aprimorar análises feitas pela EP. As avaliações realizadas com os testes relativos a esses 89 alunos apontou que a API efetivamente faz recomendações de estudos, e também fornece um relatório individual customizado, com infográficos intuitivos e métricas analíticas, facilitando maior compreensão da trajetória individual evolutiva ao longo do curso. A EP da empresa também recebe um feedback que que lhe permite identificar o avanço dos alunos no decorrer do curso, avalia a eficácia dos itens inclusos nos simulados e quantifica a aptidão de um teste em mensurar as habilidades dos respondentes. Dos alunos que avaliaram o relatório, 68,2% deram a nota máxima (5), enquanto 22,7% e 9,1% atribuíram notas 4 e 3, respectivamente. Além disso, 95,2% perceberam as recomendações como benéficas para entender e melhorar suas habilidades nas áreas indicadas, evidenciando o impacto positivo do relatório em sua autoavaliação e no planejamento de estudosSubmitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2024-05-29T15:09:17Z No. of bitstreams: 1 Gustavo Malacarne.pdf: 13728644 bytes, checksum: 9d4f93714eafaea279eed18cd718aad2 (MD5)Made available in DSpace on 2024-05-29T15:09:17Z (GMT). No. of bitstreams: 1 Gustavo Malacarne.pdf: 13728644 bytes, checksum: 9d4f93714eafaea279eed18cd718aad2 (MD5) Previous issue date: 2024-02-29Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Ciência da ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSistema de RecomendaçãoRecomendação de EstudosAfaConAPITCTTRIRecommendation SystemStudy RecommendationAlfaConAPICTTIRTCIÊNCIA DA COMPUTAÇÃORecomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.Study Recommendations in the AlfaCon Virtual Learning Environment: Studies with a RESTful APIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19749965330812744706006006002214374442868382015-2555911436985713659reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALGustavo Malacarne.pdfGustavo Malacarne.pdfapplication/pdf13728644http://tede.unioeste.br:8080/tede/bitstream/tede/7232/2/Gustavo+Malacarne.pdf9d4f93714eafaea279eed18cd718aad2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7232/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/72322024-05-29 12:09:17.306oai:tede.unioeste.br:tede/7232Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-05-29T15:09:17Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
dc.title.alternative.eng.fl_str_mv Study Recommendations in the AlfaCon Virtual Learning Environment: Studies with a RESTful API
title Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
spellingShingle Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
Malacarne, Gustavo Raí
Sistema de Recomendação
Recomendação de Estudos
AfaCon
API
TCT
TRI
Recommendation System
Study Recommendation
AlfaCon
API
CTT
IRT
CIÊNCIA DA COMPUTAÇÃO
title_short Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
title_full Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
title_fullStr Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
title_full_unstemmed Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
title_sort Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful.
author Malacarne, Gustavo Raí
author_facet Malacarne, Gustavo Raí
author_role author
dc.contributor.advisor1.fl_str_mv Rizzi, Claudia Brandelero
dc.contributor.advisor-co1.fl_str_mv Rizzi, Rogério Luis
dc.contributor.referee1.fl_str_mv Scheffel, Roberto Milton
dc.contributor.referee2.fl_str_mv Naves, Thiago França
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3642014638268689
dc.contributor.author.fl_str_mv Malacarne, Gustavo Raí
contributor_str_mv Rizzi, Claudia Brandelero
Rizzi, Rogério Luis
Scheffel, Roberto Milton
Naves, Thiago França
dc.subject.por.fl_str_mv Sistema de Recomendação
Recomendação de Estudos
AfaCon
API
TCT
TRI
topic Sistema de Recomendação
Recomendação de Estudos
AfaCon
API
TCT
TRI
Recommendation System
Study Recommendation
AlfaCon
API
CTT
IRT
CIÊNCIA DA COMPUTAÇÃO
dc.subject.eng.fl_str_mv Recommendation System
Study Recommendation
AlfaCon
API
CTT
IRT
dc.subject.cnpq.fl_str_mv CIÊNCIA DA COMPUTAÇÃO
description This work presents the development and initial studies of an Application Programming Interface (API) for the Virtual Learning Environment (VLE) of AlfaCon, focused on preparing students for public service exams. The API, based on the Theory of Meaningful Learning (TML), Classical Test Theory (CTT), and Item Response Theory (IRT), makes study recommendations to students who opt for its use and commit to providing additional personal data and answers from simulated exams. This is part of a broader effort by the company to transition from the traditional VLE currently in use to an adaptive VLE, which makes content recommendations based on its duly cataloged Educational Objects and their didactic and operational characteristics. The indication pointed out by this research for AlfaCon to conduct such a transition, especially due to the scarcity of complete and adequate data related to students and the actions they and the Pedagogical Team (PT) perform in the VLE, is the use of the API, for a minimum period of time, so that stakeholders have more and better convictions about the specifics and needs regarding the requirements of the intended adaptive VLE. The API operates independently of AlfaCon’s current VLE, not interfering with the dynamics of ongoing courses but collecting necessary data. During a simulated exam for the Federal Highway Police (PRF) preparatory course, made available by AlfaCon at the end of 2023, a real-time test with the API was conducted with 89 volunteer students, enabling an evaluation involving CTT metrics and respondents’ prior knowledge, as predicted by TML, to identify areas of knowledge where they showed greater difficulties and other aspects. IRT contributed to identifying discrimination parameters, difficulty, and the chance of guessing correctly on the items of the simulated exam, enabling the creation of charts to enhance analyses made by the PT. The evaluations conducted with the tests related to these 89 students pointed out that the API effectively makes study recommendations and also provides a customized individual report, with intuitive infographics and analytical metrics, facilitating a better understanding of the individual evolutionary trajectory throughout the course. The company’s PT also receives feedback that identifies students’ progress during the course, assesses the effectiveness of the items included in the simulations, and quantifies a test’s aptitude in measuring respondents’ skills. Of the students who evaluated the report, 68.2% gave the highest score (5), while 22.7% and 9.1% assigned scores 4 and 3, respectively. Moreover, 95.2% perceived the recommendations as beneficial for understanding and improving their skills in the indicated areas, evidencing the positive impact of the report on their self-assessment and study planning.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-05-29T15:09:17Z
dc.date.issued.fl_str_mv 2024-02-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Malacarne, Gustavo Raí. Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful. 2024. 200 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/7232
identifier_str_mv Malacarne, Gustavo Raí. Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful. 2024. 200 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/7232
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/7232/2/Gustavo+Malacarne.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/7232/1/license.txt
bitstream.checksum.fl_str_mv 9d4f93714eafaea279eed18cd718aad2
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723329029013504