Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/5510 |
Resumo: | The general objective of the research was to outline Management Zones (MZs), which were made from average productivity data for 4 harvests (soybeans, corn, soybeans, wheat) and Vegetation Indices (VIs) data, obtained through orbital and aerial remote sensing, using the Fuzzy c-means algorithm. The monitoring was carried out throughout 4 agricultural harvests in two areas of a rural property located in the municipality of Toledo – Paraná. Sentinel-2 images (MSI sensor) were used, which were obtained through the Google Earth Engine (GEE) platform, as well as images achieved from a Remotely Piloted Aircraft System (RPA). With the productivity data for each harvest, descriptive statistical analyses were executed and, subsequently, correlation analyses among the VIs and the yields, using the Spearman (rs) correlation coefficient. The precision agriculture platform AgDataBox-MAP was used in order to outline the MZs. In it, statistical analyses, filtering of data, removal of influential points (outliers and inliers) and normalization were carried out. The created MZs were evaluated within the following metrics: smoothness index (SI), fuzzy performance index (FPI), modified partition entropy (MPE), improved cluster validation index (ICVI). The similarity of the maps was evaluated according to the Kappa statistics. For the VIs that used RPA images, the highest correlations over the harvests were found for the 2018/2019 soybean crop, with 94 DAS in area 2, and values of 0.72 (GLI and ExG), classified as a strong correlation, 0.53 for VARI and 0.47 for MPRI, as a moderate correlation. From the usage of indexes obtained through images from the Sentinel-2 Satellite, the 2018/2019 soybean crop, with 80 DAS in area 2, showed the highest correlations when it comes to productivity, therefore classified as moderate, 0.58 (NDVI and SAVI) and 0.60 (EVI2 and NDRE). For the remaining periods of time evaluated throughout the 4 harvests, the correlations were classified as: very weak or weak. The application of VIs generated by orbital and aerial remote sensing was proved to be an alternative for the creation of MZs, especially in conditions where there is no possibility of accessing data for soil attributes. In general, the VIs that also use the infrared wavelength presented better values of SI, FPI, MPE and ICVI, which implied that they were more efficient in the design of the MZs. |
id |
UNIOESTE-1_ebbba5f795fc25ed44b9d280942c4696 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/5510 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Gurgacz, Flaviohttp://lattes.cnpq.br/5841903379711710Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Andrade, Maurício Guy dehttp://lattes.cnpq.br/4821884579392567Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Souza, Carlos Henrique Wachholz dehttp://lattes.cnpq.br/2804633646710952Mercante, Eriveltohttp://lattes.cnpq.br/4061800207647478http://lattes.cnpq.br/5869905899609115Rosa, Helton Aparecido2021-08-12T11:57:02Z2021-05-17ROSA, Helton Aparecido. Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão. 2021. 111 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.http://tede.unioeste.br/handle/tede/5510The general objective of the research was to outline Management Zones (MZs), which were made from average productivity data for 4 harvests (soybeans, corn, soybeans, wheat) and Vegetation Indices (VIs) data, obtained through orbital and aerial remote sensing, using the Fuzzy c-means algorithm. The monitoring was carried out throughout 4 agricultural harvests in two areas of a rural property located in the municipality of Toledo – Paraná. Sentinel-2 images (MSI sensor) were used, which were obtained through the Google Earth Engine (GEE) platform, as well as images achieved from a Remotely Piloted Aircraft System (RPA). With the productivity data for each harvest, descriptive statistical analyses were executed and, subsequently, correlation analyses among the VIs and the yields, using the Spearman (rs) correlation coefficient. The precision agriculture platform AgDataBox-MAP was used in order to outline the MZs. In it, statistical analyses, filtering of data, removal of influential points (outliers and inliers) and normalization were carried out. The created MZs were evaluated within the following metrics: smoothness index (SI), fuzzy performance index (FPI), modified partition entropy (MPE), improved cluster validation index (ICVI). The similarity of the maps was evaluated according to the Kappa statistics. For the VIs that used RPA images, the highest correlations over the harvests were found for the 2018/2019 soybean crop, with 94 DAS in area 2, and values of 0.72 (GLI and ExG), classified as a strong correlation, 0.53 for VARI and 0.47 for MPRI, as a moderate correlation. From the usage of indexes obtained through images from the Sentinel-2 Satellite, the 2018/2019 soybean crop, with 80 DAS in area 2, showed the highest correlations when it comes to productivity, therefore classified as moderate, 0.58 (NDVI and SAVI) and 0.60 (EVI2 and NDRE). For the remaining periods of time evaluated throughout the 4 harvests, the correlations were classified as: very weak or weak. The application of VIs generated by orbital and aerial remote sensing was proved to be an alternative for the creation of MZs, especially in conditions where there is no possibility of accessing data for soil attributes. In general, the VIs that also use the infrared wavelength presented better values of SI, FPI, MPE and ICVI, which implied that they were more efficient in the design of the MZs.O objetivo geral da pesquisa foi delinear zonas de manejo (ZMs), criadas a partir de dados de produtividade média de 4 safras (soja, milho, soja, trigo) e dados de índices de vegetação (IVs), obtidos por sensoriamento remoto orbital e aéreo, utilizando o algoritmo Fuzzy c means. O monitoramento foi realizado em 4 safras, em duas áreas de uma propriedade rural localizada no município de Toledo – Paraná. Utilizaram-se imagens do satélite Sentinel-2 (sensor MSI), obtidas por meio da plataforma Google Earth Engine (GEE) e imagens obtidas através de um Remotely Piloted Aircraft System (RPA). Com os dados de produtividade de cada safra, foram realizadas análises de estatística descritiva e, posteriormente, análises de correlação entre os IVs e as produtividades, por meio do coeficiente de correlação de Spearman (rs). Utilizou-se a plataforma de agricultura de precisão AgDataBox-MAP para delinear as ZMs. Nela, realizaram-se análises estatísticas, filtragem dos dados, retiradas de pontos influentes (outliers e inliers) e normalização. As ZMs criadas foram avaliadas utilizando-se as métricas: índice de suavidade (SI), índice de desempenho fuzzy (FPI), entropia de partição modificada (MPE), índice de validação de grupos aprimorado (ICVI). A similaridade dos mapas foi avaliada de acordo com o índice de concordância Kappa. Para os IVs que utilizaram as imagens de RPA, as maiores correlações ao longo das safras foram encontradas para cultura de soja 2018/2019, com 94 DAS na área 2, com valores de 0,72 (GLI e ExG), classificadas como correlação forte. 0,53 para VARI e 0,47 para MPRI, sendo correlações moderadas. Utilizando índices obtidos com imagens do satélite Sentinel-2, a safra de soja 2018/2019 com 80 DAS na área 2 foi a que apresentou maiores correlações com produtividade, classificadas como moderadas e 0,58 (NDVI e SAVI) e 0,60 (EVI2 e NDRE). Para as demais datas avaliadas ao longo das 4 safras as correlações foram classificadas como: muito fracas ou fracas. A utilização de IVs gerados por sensoriamento remoto orbital e aéreo se mostraram como alternativa para criação de ZMs, principalmente em condições que não se tem a possibilidade de ter dados de atributos de solos. De maneira geral, os IVs que utilizam o comprimento infravermelho, apresentaram melhores valores de SI, FPI, MPE, ICVI, o que implicou maior eficiência no delineamento das ZMs.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2021-08-12T11:57:02Z No. of bitstreams: 2 Helton_Rosa2021.pdf: 5724502 bytes, checksum: e2e7fa0bd95b6e8063fde7f08ac03016 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2021-08-12T11:57:02Z (GMT). No. of bitstreams: 2 Helton_Rosa2021.pdf: 5724502 bytes, checksum: e2e7fa0bd95b6e8063fde7f08ac03016 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-05-17application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÍndices de vegetaçãoFuzzy C-meansAgrupamentoVegetation indicesFuzzy C-meansClusteringSistemas Biológicos e AgroindustriaisSensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisãoOrbital and non-orbital remote sensing in the design of management zones for precision agricultureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-53476924504160521296006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALHelton_Rosa2021.pdfHelton_Rosa2021.pdfapplication/pdf5724502http://tede.unioeste.br:8080/tede/bitstream/tede/5510/5/Helton_Rosa2021.pdfe2e7fa0bd95b6e8063fde7f08ac03016MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5510/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5510/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5510/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5510/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/55102021-08-12 08:57:02.384oai:tede.unioeste.br:tede/5510Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2021-08-12T11:57:02Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
dc.title.alternative.eng.fl_str_mv |
Orbital and non-orbital remote sensing in the design of management zones for precision agriculture |
title |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
spellingShingle |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão Rosa, Helton Aparecido Índices de vegetação Fuzzy C-means Agrupamento Vegetation indices Fuzzy C-means Clustering Sistemas Biológicos e Agroindustriais |
title_short |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
title_full |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
title_fullStr |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
title_full_unstemmed |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
title_sort |
Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão |
author |
Rosa, Helton Aparecido |
author_facet |
Rosa, Helton Aparecido |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.advisor-co1.fl_str_mv |
Gurgacz, Flavio |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5841903379711710 |
dc.contributor.referee1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.referee2.fl_str_mv |
Andrade, Maurício Guy de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4821884579392567 |
dc.contributor.referee3.fl_str_mv |
Maggi, Marcio Furlan |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8677221771738301 |
dc.contributor.referee4.fl_str_mv |
Souza, Carlos Henrique Wachholz de |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/2804633646710952 |
dc.contributor.referee5.fl_str_mv |
Mercante, Erivelto |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/4061800207647478 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5869905899609115 |
dc.contributor.author.fl_str_mv |
Rosa, Helton Aparecido |
contributor_str_mv |
Johann, Jerry Adriani Gurgacz, Flavio Johann, Jerry Adriani Andrade, Maurício Guy de Maggi, Marcio Furlan Souza, Carlos Henrique Wachholz de Mercante, Erivelto |
dc.subject.por.fl_str_mv |
Índices de vegetação Fuzzy C-means Agrupamento |
topic |
Índices de vegetação Fuzzy C-means Agrupamento Vegetation indices Fuzzy C-means Clustering Sistemas Biológicos e Agroindustriais |
dc.subject.eng.fl_str_mv |
Vegetation indices Fuzzy C-means Clustering |
dc.subject.cnpq.fl_str_mv |
Sistemas Biológicos e Agroindustriais |
description |
The general objective of the research was to outline Management Zones (MZs), which were made from average productivity data for 4 harvests (soybeans, corn, soybeans, wheat) and Vegetation Indices (VIs) data, obtained through orbital and aerial remote sensing, using the Fuzzy c-means algorithm. The monitoring was carried out throughout 4 agricultural harvests in two areas of a rural property located in the municipality of Toledo – Paraná. Sentinel-2 images (MSI sensor) were used, which were obtained through the Google Earth Engine (GEE) platform, as well as images achieved from a Remotely Piloted Aircraft System (RPA). With the productivity data for each harvest, descriptive statistical analyses were executed and, subsequently, correlation analyses among the VIs and the yields, using the Spearman (rs) correlation coefficient. The precision agriculture platform AgDataBox-MAP was used in order to outline the MZs. In it, statistical analyses, filtering of data, removal of influential points (outliers and inliers) and normalization were carried out. The created MZs were evaluated within the following metrics: smoothness index (SI), fuzzy performance index (FPI), modified partition entropy (MPE), improved cluster validation index (ICVI). The similarity of the maps was evaluated according to the Kappa statistics. For the VIs that used RPA images, the highest correlations over the harvests were found for the 2018/2019 soybean crop, with 94 DAS in area 2, and values of 0.72 (GLI and ExG), classified as a strong correlation, 0.53 for VARI and 0.47 for MPRI, as a moderate correlation. From the usage of indexes obtained through images from the Sentinel-2 Satellite, the 2018/2019 soybean crop, with 80 DAS in area 2, showed the highest correlations when it comes to productivity, therefore classified as moderate, 0.58 (NDVI and SAVI) and 0.60 (EVI2 and NDRE). For the remaining periods of time evaluated throughout the 4 harvests, the correlations were classified as: very weak or weak. The application of VIs generated by orbital and aerial remote sensing was proved to be an alternative for the creation of MZs, especially in conditions where there is no possibility of accessing data for soil attributes. In general, the VIs that also use the infrared wavelength presented better values of SI, FPI, MPE and ICVI, which implied that they were more efficient in the design of the MZs. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-08-12T11:57:02Z |
dc.date.issued.fl_str_mv |
2021-05-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROSA, Helton Aparecido. Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão. 2021. 111 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/5510 |
identifier_str_mv |
ROSA, Helton Aparecido. Sensoriamento remoto orbital e não orbital no delineamento de zonas de manejo para agricultura de precisão. 2021. 111 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
url |
http://tede.unioeste.br/handle/tede/5510 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/5510/5/Helton_Rosa2021.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/5510/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/5510/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/5510/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/5510/1/license.txt |
bitstream.checksum.fl_str_mv |
e2e7fa0bd95b6e8063fde7f08ac03016 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723443601670144 |