Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap

Detalhes bibliográficos
Autor(a) principal: Milagre, Selma Terezinha
Data de Publicação: 2008
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04032009-150315/
Resumo: A técnica de agrupamento de dados é amplamente utilizada em análise exploratória, a qual é frequentemente necessária em diversas áreas de pesquisa tais como medicina, biologia e estatística, para avaliar potenciais hipóteses a serem utilizadas em estudos subseqüentes. Em bases de dados reais, a ocorrência de dados incompletos, nos quais os valores de um ou mais atributos do dado são desconhecidos, é bastante comum. Este trabalho apresenta um método capaz de identificar o número de grupos presentes em bases de dados incompletas, utilizando a combinação das técnicas de agrupamentos nebulosos e reamostragem bootstrap. A qualidade da classificação é baseada em medidas de comparação tradicionais como F1, Classificação Cruzada, Hubert e outras. Os estudos foram feitos em oito bases de dados. As quatro primeiras são bases de dados artificiais, a quinta e a sexta são a wine e íris. A sétima e oitava bases são formadas por uma coleção brasileira de 119 estirpes de Bradyrhizobium. Para avaliar toda informação sem introduzir estimativas, fez-se a modificação do algoritmo Fuzzy C-Means (FCM) utilizando-se um vetor de índices de atributos, os quais indicam onde o valor de um atributo é observado ou não, modificando-se ento, os cálculos do centro e distância ao centro. As simulações foram feitas de 2 até 8 grupos utilizando-se 100 sub-amostras. Os percentuais de valores faltando utilizados foram 2%, 5%, 10%, 20% e 30%. Os resultados deste trabalho demonstraram que nosso método é capaz de identificar participações relevantes, até em presença de altos índices de dados incompletos, sem a necessidade de se fazer nenhuma suposição sobre a base de dados. As medidas Hubert e índice randômico ajustado encontraram os melhores resultados experimentais.
id USP_410889c1c8efdb7dd1d86041c76e3bc4
oai_identifier_str oai:teses.usp.br:tde-04032009-150315
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem BootstrapAnalysis the number of clusters present in incomplete datasets using a combination of the fuzzy clustering and resampling bootstrappingAgrupamento de dadosBootstrapBootstrapClusteringDados incompletosFuzzy c-MeansFuzzy c-MeansMissing valuesA técnica de agrupamento de dados é amplamente utilizada em análise exploratória, a qual é frequentemente necessária em diversas áreas de pesquisa tais como medicina, biologia e estatística, para avaliar potenciais hipóteses a serem utilizadas em estudos subseqüentes. Em bases de dados reais, a ocorrência de dados incompletos, nos quais os valores de um ou mais atributos do dado são desconhecidos, é bastante comum. Este trabalho apresenta um método capaz de identificar o número de grupos presentes em bases de dados incompletas, utilizando a combinação das técnicas de agrupamentos nebulosos e reamostragem bootstrap. A qualidade da classificação é baseada em medidas de comparação tradicionais como F1, Classificação Cruzada, Hubert e outras. Os estudos foram feitos em oito bases de dados. As quatro primeiras são bases de dados artificiais, a quinta e a sexta são a wine e íris. A sétima e oitava bases são formadas por uma coleção brasileira de 119 estirpes de Bradyrhizobium. Para avaliar toda informação sem introduzir estimativas, fez-se a modificação do algoritmo Fuzzy C-Means (FCM) utilizando-se um vetor de índices de atributos, os quais indicam onde o valor de um atributo é observado ou não, modificando-se ento, os cálculos do centro e distância ao centro. As simulações foram feitas de 2 até 8 grupos utilizando-se 100 sub-amostras. Os percentuais de valores faltando utilizados foram 2%, 5%, 10%, 20% e 30%. Os resultados deste trabalho demonstraram que nosso método é capaz de identificar participações relevantes, até em presença de altos índices de dados incompletos, sem a necessidade de se fazer nenhuma suposição sobre a base de dados. As medidas Hubert e índice randômico ajustado encontraram os melhores resultados experimentais.Clustering in exploratory data analysis is often necessary in several areas of the survey such as medicine, biology and statistics, to evaluate potential hypotheses for subsequent studies. In real datasets the occurrence of incompleteness, where the values of some of the attributes are unknown, is very common. This work presents a method capable to identifying the number of clusters present in incomplete datasets, using a combination of the fuzzy clustering and resampling (bootstrapping). The quality of classification is based on the traditional measures, like F1, Cross-Classification, Hubert and others. The studies were made on eigth datasets. The first four are artificial datasets, the fifth and sixth are the wine and iris datasets. The seventh and eighth databases are composed of the brazilian collection of 119 Bradyrhizobium strains. To evaluate all information without introducing estimates, a modification of the Fuzzy C-Means (FCM) algorithm was developed using an index vector of attributes, which indicates whether an attribute value is observed or not, and changing the center and distance calculations. The simulations were made from 2 to 8 clusters using 100 sub-samples. The percentages of the missing values used were 2%, 5%, 10%, 20% and 30%. Even lacking data and with no special requirements of the database, the results of this work demonstrate that the proposed method is capable to identifying relevant partitions. The best experimental results were found using Hubert and corrected randomness measures.Biblioteca Digitais de Teses e Dissertações da USPMaciel, Carlos DiasMilagre, Selma Terezinha2008-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-04032009-150315/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-04032009-150315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
Analysis the number of clusters present in incomplete datasets using a combination of the fuzzy clustering and resampling bootstrapping
title Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
spellingShingle Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
Milagre, Selma Terezinha
Agrupamento de dados
Bootstrap
Bootstrap
Clustering
Dados incompletos
Fuzzy c-Means
Fuzzy c-Means
Missing values
title_short Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
title_full Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
title_fullStr Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
title_full_unstemmed Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
title_sort Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap
author Milagre, Selma Terezinha
author_facet Milagre, Selma Terezinha
author_role author
dc.contributor.none.fl_str_mv Maciel, Carlos Dias
dc.contributor.author.fl_str_mv Milagre, Selma Terezinha
dc.subject.por.fl_str_mv Agrupamento de dados
Bootstrap
Bootstrap
Clustering
Dados incompletos
Fuzzy c-Means
Fuzzy c-Means
Missing values
topic Agrupamento de dados
Bootstrap
Bootstrap
Clustering
Dados incompletos
Fuzzy c-Means
Fuzzy c-Means
Missing values
description A técnica de agrupamento de dados é amplamente utilizada em análise exploratória, a qual é frequentemente necessária em diversas áreas de pesquisa tais como medicina, biologia e estatística, para avaliar potenciais hipóteses a serem utilizadas em estudos subseqüentes. Em bases de dados reais, a ocorrência de dados incompletos, nos quais os valores de um ou mais atributos do dado são desconhecidos, é bastante comum. Este trabalho apresenta um método capaz de identificar o número de grupos presentes em bases de dados incompletas, utilizando a combinação das técnicas de agrupamentos nebulosos e reamostragem bootstrap. A qualidade da classificação é baseada em medidas de comparação tradicionais como F1, Classificação Cruzada, Hubert e outras. Os estudos foram feitos em oito bases de dados. As quatro primeiras são bases de dados artificiais, a quinta e a sexta são a wine e íris. A sétima e oitava bases são formadas por uma coleção brasileira de 119 estirpes de Bradyrhizobium. Para avaliar toda informação sem introduzir estimativas, fez-se a modificação do algoritmo Fuzzy C-Means (FCM) utilizando-se um vetor de índices de atributos, os quais indicam onde o valor de um atributo é observado ou não, modificando-se ento, os cálculos do centro e distância ao centro. As simulações foram feitas de 2 até 8 grupos utilizando-se 100 sub-amostras. Os percentuais de valores faltando utilizados foram 2%, 5%, 10%, 20% e 30%. Os resultados deste trabalho demonstraram que nosso método é capaz de identificar participações relevantes, até em presença de altos índices de dados incompletos, sem a necessidade de se fazer nenhuma suposição sobre a base de dados. As medidas Hubert e índice randômico ajustado encontraram os melhores resultados experimentais.
publishDate 2008
dc.date.none.fl_str_mv 2008-07-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04032009-150315/
url http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04032009-150315/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256650412457984