Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/3768 |
Resumo: | This tesis aimed at studying spatial discrete distributions based on two different points of view, that are, spatial point processes and spatial correlated binomial distribution. The data set came from an experiment setted in an agricultural commercial area in Cascavel city Paraná State, cropped with corn. The experimental area was subdivided into 40 georeferenced patch of land and the number of plants infected by Spodoptera frugiperda was observed within each patch of land. Thus, it is assumed that the data set have a binomial distribution. A study of first order local influence was proposed in order to verify possible influential points. The results suggest that the presence of influential observations in the data set have changed the statistical inference, the predicted values and the respective maps. In a second study, our interest was the spatial distribution of the fall armyworm in the experimental area. In order to do that, we used spatial point processes, where each plant infected by the insect within the experimental area was considered as an event of interest. An anisotropy study was carried out using different point process techniques, such as K directional function and wavelet test. The results show that the spatial distribution of the fall armyworm follow a Poisson cluster process with an evident anisotropy, mainly due to the shape of the experimental area. |
id |
UNIOESTE-1_f40de11a652b36ad3215c0ee89b6cf23 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/3768 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Uribe Opazo, Miguel Angelhttp://lattes.cnpq.br/4179444121729414De Bastiani, Fernandahttp://lattes.cnpq.br/5519064508209103Nicolis, Oriettahttp://lattes.cnpq.br/1143509183194861Rojas, Manuel Jesus Galeahttp://lattes.cnpq.br/8259390182729067De Bastiani, Fernandahttp://lattes.cnpq.br/5519064508209103Guedes , Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708http://lattes.cnpq.br/6681448607094595Nava, Daniela Trentin2018-06-18T14:36:28Z2018-02-02NAVA, Daniela Trentin. Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas. 2018. 73 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/3768This tesis aimed at studying spatial discrete distributions based on two different points of view, that are, spatial point processes and spatial correlated binomial distribution. The data set came from an experiment setted in an agricultural commercial area in Cascavel city Paraná State, cropped with corn. The experimental area was subdivided into 40 georeferenced patch of land and the number of plants infected by Spodoptera frugiperda was observed within each patch of land. Thus, it is assumed that the data set have a binomial distribution. A study of first order local influence was proposed in order to verify possible influential points. The results suggest that the presence of influential observations in the data set have changed the statistical inference, the predicted values and the respective maps. In a second study, our interest was the spatial distribution of the fall armyworm in the experimental area. In order to do that, we used spatial point processes, where each plant infected by the insect within the experimental area was considered as an event of interest. An anisotropy study was carried out using different point process techniques, such as K directional function and wavelet test. The results show that the spatial distribution of the fall armyworm follow a Poisson cluster process with an evident anisotropy, mainly due to the shape of the experimental area.O objetivo deste trabalho foi discutir distribuições discretas espaciais utilizando pontos de vista distintos, a saber, processos pontuais espaciais e distribuição binomial para dados espacialmente correlacionados. Os dados utilizados são provenientes de um experimento agrícola implantado em uma área comercial agrícola no município de Cascavel, estado do Paraná, cultivada com a cultura do milho. Subdividiu-se a área experimental em 40 parcelas georeferenciadas e observou-se o número de plantas atacadas pela lagarta do cartucho, do total de plantas de cada parcela. Para tal, assumiu-se que os dados possuem distribuição binomial. Propôs-se um estudo de análise de influência local de primeira ordem com o interesse em verificar possíveis pontos influentes. Os resultados obtidos sugerem que a presença de observações influentes nos dados modificam a inferência estatística, os valores preditos e os respectivos mapas. Em um segundo estudo, que teve como interesse a distribuição espacial da lagarta do cartucho na área experimental, utilizou-se de ferramentais de estatística espacial pontual. Para tal, cada planta infectada pelo inseto dentro da área experimental foi considerada como um evento de interesse. Realizou-se um estudo de anisotropia a partir de diferentes técnicas de processos pontuais, como K direcional e teste de ondaletas. Os resultados mostraram que a distribuição espacial da lagarta segue um processo pontual de Poisson agrupado com evidente anisotropia principalmente devido à forma da área experimental.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-06-18T14:36:28Z No. of bitstreams: 2 Daniela_Nava2018.pdf: 3424820 bytes, checksum: 89e78787f114c44f669182c6285080ae (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-06-18T14:36:28Z (GMT). No. of bitstreams: 2 Daniela_Nava2018.pdf: 3424820 bytes, checksum: 89e78787f114c44f669182c6285080ae (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-02application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnálise de influênciaDistribuição binomial para dados espacialmente correlacionadosFunção K direcionalProcessos de PoissonTeste de ondaletasInfluence analysisK directionalPoisson processesSpatial correlated binomial distributionWavelet testCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAModelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolasGeneralized linear models and point processes In spatial analysis of agricultural datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820159185445721588761555reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALDaniela_Nava2018.pdfDaniela_Nava2018.pdfapplication/pdf3424820http://tede.unioeste.br:8080/tede/bitstream/tede/3768/5/Daniela_Nava2018.pdf89e78787f114c44f669182c6285080aeMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/3768/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3768/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3768/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3768/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/37682018-06-18 11:36:28.462oai:tede.unioeste.br:tede/3768Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2018-06-18T14:36:28Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
dc.title.alternative.eng.fl_str_mv |
Generalized linear models and point processes In spatial analysis of agricultural data |
title |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
spellingShingle |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas Nava, Daniela Trentin Análise de influência Distribuição binomial para dados espacialmente correlacionados Função K direcional Processos de Poisson Teste de ondaletas Influence analysis K directional Poisson processes Spatial correlated binomial distribution Wavelet test CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
title_full |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
title_fullStr |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
title_full_unstemmed |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
title_sort |
Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas |
author |
Nava, Daniela Trentin |
author_facet |
Nava, Daniela Trentin |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Uribe Opazo, Miguel Angel |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.advisor-co1.fl_str_mv |
De Bastiani, Fernanda |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5519064508209103 |
dc.contributor.advisor-co2.fl_str_mv |
Nicolis, Orietta |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/1143509183194861 |
dc.contributor.referee1.fl_str_mv |
Rojas, Manuel Jesus Galea |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8259390182729067 |
dc.contributor.referee2.fl_str_mv |
De Bastiani, Fernanda |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5519064508209103 |
dc.contributor.referee3.fl_str_mv |
Guedes , Luciana Pagliosa Carvalho |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.referee4.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6681448607094595 |
dc.contributor.author.fl_str_mv |
Nava, Daniela Trentin |
contributor_str_mv |
Uribe Opazo, Miguel Angel De Bastiani, Fernanda Nicolis, Orietta Rojas, Manuel Jesus Galea De Bastiani, Fernanda Guedes , Luciana Pagliosa Carvalho Johann, Jerry Adriani |
dc.subject.por.fl_str_mv |
Análise de influência Distribuição binomial para dados espacialmente correlacionados Função K direcional Processos de Poisson Teste de ondaletas |
topic |
Análise de influência Distribuição binomial para dados espacialmente correlacionados Função K direcional Processos de Poisson Teste de ondaletas Influence analysis K directional Poisson processes Spatial correlated binomial distribution Wavelet test CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Influence analysis K directional Poisson processes Spatial correlated binomial distribution Wavelet test |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
This tesis aimed at studying spatial discrete distributions based on two different points of view, that are, spatial point processes and spatial correlated binomial distribution. The data set came from an experiment setted in an agricultural commercial area in Cascavel city Paraná State, cropped with corn. The experimental area was subdivided into 40 georeferenced patch of land and the number of plants infected by Spodoptera frugiperda was observed within each patch of land. Thus, it is assumed that the data set have a binomial distribution. A study of first order local influence was proposed in order to verify possible influential points. The results suggest that the presence of influential observations in the data set have changed the statistical inference, the predicted values and the respective maps. In a second study, our interest was the spatial distribution of the fall armyworm in the experimental area. In order to do that, we used spatial point processes, where each plant infected by the insect within the experimental area was considered as an event of interest. An anisotropy study was carried out using different point process techniques, such as K directional function and wavelet test. The results show that the spatial distribution of the fall armyworm follow a Poisson cluster process with an evident anisotropy, mainly due to the shape of the experimental area. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-06-18T14:36:28Z |
dc.date.issued.fl_str_mv |
2018-02-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NAVA, Daniela Trentin. Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas. 2018. 73 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/3768 |
identifier_str_mv |
NAVA, Daniela Trentin. Modelos lineares generalizados e processos pontuais em Análise espacial de dados agrícolas. 2018. 73 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
url |
http://tede.unioeste.br/handle/tede/3768 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/3768/5/Daniela_Nava2018.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/3768/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/3768/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/3768/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/3768/1/license.txt |
bitstream.checksum.fl_str_mv |
89e78787f114c44f669182c6285080ae 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723398688014336 |