Organic agriculture in brazilian microregions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Informe Gepec (Online) |
DOI: | 10.48075/igepec.v28i1.32250 |
Texto Completo: | https://e-revista.unioeste.br/index.php/gepec/article/view/32250 |
Resumo: | This article analyzes the issue of the spatial distribution of properties with organic agriculture and its conditioning factors. The data used are from the Agricultural Census for the year 2017 at the micro-regional level and the methodological approach used is spatial in nature, namely global and local spatial regressions. The results show that access to technical guidance positively influences the level of properties with organic agriculture, while mechanization has the opposite effect. This is due to the range of information available to the producer and the lower level of demand for machines in this type of production, respectively. On the other hand, factors related to the producer's age, education level and labor force presented particularities regarding the level of properties with organic agriculture. |
id |
UNIOESTE-5_f8d9e0996dbf03e9d122f10b286fcf59 |
---|---|
oai_identifier_str |
oai:ojs.e-revista.unioeste.br:article/32250 |
network_acronym_str |
UNIOESTE-5 |
network_name_str |
Informe Gepec (Online) |
spelling |
Organic agriculture in brazilian microregionsAgricultura orgánica en las microrregiones brasileñasAGRICULTURA ORGÂNICA NAS MICRORREGIÕES BRASILEIRAS/Organic agriculture in Brazilian microregionsmodelo GWRmeio-ambienteeconomia verdemodelo GWRmedio ambienteeconomía verdeGreen economyEnvironmentGWR ModelThis article analyzes the issue of the spatial distribution of properties with organic agriculture and its conditioning factors. The data used are from the Agricultural Census for the year 2017 at the micro-regional level and the methodological approach used is spatial in nature, namely global and local spatial regressions. The results show that access to technical guidance positively influences the level of properties with organic agriculture, while mechanization has the opposite effect. This is due to the range of information available to the producer and the lower level of demand for machines in this type of production, respectively. On the other hand, factors related to the producer's age, education level and labor force presented particularities regarding the level of properties with organic agriculture.O presente artigo analisa a questão da distribuição espacial das propriedades com agricultura orgânica e seus fatores condicionantes. Os dados utilizados são do Censo Agropecuário para o ano de 2017 ao nível microrregional e a abordagem metodológica empregada é de cunho espacial, sendo elas, regressões espaciais globais e locais. Os resultados mostram que o acesso à orientação técnica influencia positivamente o nível de propriedades com agricultura orgânica, enquanto a mecanização apresenta efeito inverso. Por outro lado, os fatores relacionados à idade do produtor, nível de escolaridade e mão de obra apresentaram particularidades sobre o nível de propriedades com agricultura orgânica. Abstract: This article analyzes the issue of the spatial distribution of properties with organic agriculture and its conditioning factors. The data used are from the Agricultural Census for the year 2017 at the micro-regional level and the methodological approach used is spatial in nature, namely global and local spatial regressions. The results show that access to technical guidance positively influences the level of properties with organic agriculture, while mechanization has the opposite effect. This is due to the range of information available to the producer and the lower level of demand for machines in this type of production, respectively. On the other hand, factors related to the producer's age, education level and labor force presented particularities regarding the level of properties with organic agriculture.EdUnioeste2024-02-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://e-revista.unioeste.br/index.php/gepec/article/view/3225010.48075/igepec.v28i1.32250Informe GEPEC; v. 28 n. 1 (2024): Revista Informe GEPEC; 231-2511679-415X1676-067010.48075/igepec.v28i1reponame:Informe Gepec (Online)instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEporhttps://e-revista.unioeste.br/index.php/gepec/article/view/32250/22967Copyright (c) 2024 Informe GEPEChttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessMateus de Morais Auriglietti, LeonardoPaula Junior, Amarildo deMichellon, Ednaldo2024-02-23T20:16:58Zoai:ojs.e-revista.unioeste.br:article/32250Revistahttps://e-revista.unioeste.br/index.php/gepecPUBhttps://e-revista.unioeste.br/index.php/gepec/oairevista.gepec@gmail.com1679-415X1676-0670opendoar:2024-02-23T20:16:58Informe Gepec (Online) - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.none.fl_str_mv |
Organic agriculture in brazilian microregions Agricultura orgánica en las microrregiones brasileñas AGRICULTURA ORGÂNICA NAS MICRORREGIÕES BRASILEIRAS/Organic agriculture in Brazilian microregions |
title |
Organic agriculture in brazilian microregions |
spellingShingle |
Organic agriculture in brazilian microregions Organic agriculture in brazilian microregions Mateus de Morais Auriglietti, Leonardo modelo GWR meio-ambiente economia verde modelo GWR medio ambiente economía verde Green economy Environment GWR Model Mateus de Morais Auriglietti, Leonardo modelo GWR meio-ambiente economia verde modelo GWR medio ambiente economía verde Green economy Environment GWR Model |
title_short |
Organic agriculture in brazilian microregions |
title_full |
Organic agriculture in brazilian microregions |
title_fullStr |
Organic agriculture in brazilian microregions Organic agriculture in brazilian microregions |
title_full_unstemmed |
Organic agriculture in brazilian microregions Organic agriculture in brazilian microregions |
title_sort |
Organic agriculture in brazilian microregions |
author |
Mateus de Morais Auriglietti, Leonardo |
author_facet |
Mateus de Morais Auriglietti, Leonardo Mateus de Morais Auriglietti, Leonardo Paula Junior, Amarildo de Michellon, Ednaldo Paula Junior, Amarildo de Michellon, Ednaldo |
author_role |
author |
author2 |
Paula Junior, Amarildo de Michellon, Ednaldo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mateus de Morais Auriglietti, Leonardo Paula Junior, Amarildo de Michellon, Ednaldo |
dc.subject.por.fl_str_mv |
modelo GWR meio-ambiente economia verde modelo GWR medio ambiente economía verde Green economy Environment GWR Model |
topic |
modelo GWR meio-ambiente economia verde modelo GWR medio ambiente economía verde Green economy Environment GWR Model |
description |
This article analyzes the issue of the spatial distribution of properties with organic agriculture and its conditioning factors. The data used are from the Agricultural Census for the year 2017 at the micro-regional level and the methodological approach used is spatial in nature, namely global and local spatial regressions. The results show that access to technical guidance positively influences the level of properties with organic agriculture, while mechanization has the opposite effect. This is due to the range of information available to the producer and the lower level of demand for machines in this type of production, respectively. On the other hand, factors related to the producer's age, education level and labor force presented particularities regarding the level of properties with organic agriculture. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://e-revista.unioeste.br/index.php/gepec/article/view/32250 10.48075/igepec.v28i1.32250 |
url |
https://e-revista.unioeste.br/index.php/gepec/article/view/32250 |
identifier_str_mv |
10.48075/igepec.v28i1.32250 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://e-revista.unioeste.br/index.php/gepec/article/view/32250/22967 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Informe GEPEC https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Informe GEPEC https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EdUnioeste |
publisher.none.fl_str_mv |
EdUnioeste |
dc.source.none.fl_str_mv |
Informe GEPEC; v. 28 n. 1 (2024): Revista Informe GEPEC; 231-251 1679-415X 1676-0670 10.48075/igepec.v28i1 reponame:Informe Gepec (Online) instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Informe Gepec (Online) |
collection |
Informe Gepec (Online) |
repository.name.fl_str_mv |
Informe Gepec (Online) - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
revista.gepec@gmail.com |
_version_ |
1822182099042435072 |
dc.identifier.doi.none.fl_str_mv |
10.48075/igepec.v28i1.32250 |