Automatic design of analog integrated circuits under process parameter variability

Detalhes bibliográficos
Autor(a) principal: Quirino, Felipe Antunes
Data de Publicação: 2020
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UNIPAMPA
Texto Completo: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5381
Resumo: Analog integrated circuits have a high range of applications, from interface circuits to signal processing. These systems need to be carefully designed in order to achieve a suitable trade-off between performance and power consumption. Traditional method of designing an analog circuit is based on trial-and-error. The designer uses his own experience for testing and modifying circuit parameters with the aid of an electrical simulator, until achieving the desired solution. However, the process of sizing the circuit requires several hours of design. In addition, a SPICE simulation can take a long time. The designer needs to wait for the end of the simulation, verify the results, and from there to do another simulation. An alternative for design automation is to abstract the circuit as an optimization problem. Using an optimization algorithm it is possible to explore the design space in the search for an optimum solution. This work demonstrates an optimization analysis performed with a low-voltage bulk-driven operational transconductance amplifier. Previous works demonstrated the modeling of this circuit as an optimization problem, but only for nominal values. However, a nominal analysis presents the performance disregarding process parameter variability that affect the performance. In the present work, we propose a design automation tool of analog integrated circuits using yield analysis, i.e, estimating performance with Monte Carlo electrical in order to evaluate the impact of process variability on circuit performance. In general, optimization algorithms present random variables (i.e., even with the same parameters, different seeds for the random number generator function may converge to different results). In order to further understanding this behavior, this work analyses the behavior of many executions of the algorithm. The adjustable parameter on the present algorithm (Cuckoo Search) is the number of nests. We performed the simulation 30 times for the same number of nests, varying the number of nests from 10 to 490 with a total of 1470 executions. As result, this work demonstrates a statistic analysis of all designs intending to find the best parameters for the tool. After getting the parameters, we analysed the circuit behavior for the worst, median and best cases, with the fixed parameter. The tool is able to design analog integrated circuits automatically, however without a guarantee of a feasible solution. For instance, in the worst case example, the algorithm converges to an unfeasible solution for practical terms. However, this could be mitigated with a large member of iterations or with more than one execution. In the best case, the amplifier designed with the optimization tool presents improvements in terms of (8.86nW of mean ± 0.22 of standard deviation in comparison to 18nW designed manually), PM (59.99 ∘ ± 10.15 in comparison to 52.50 ∘ ) and GBW (3.81kHz ± 0.65 in comparison to 1.88kHz).
id UNIP_4ae5b6e688948aebe0857b73ed0d4737
oai_identifier_str oai:repositorio.unipampa.edu.br:riu/5381
network_acronym_str UNIP
network_name_str Repositório Institucional da UNIPAMPA
repository_id_str
spelling Girardi, Alessandro GonçalvesQuirino, Felipe Antunes2021-03-11T22:05:22Z2021-03-112021-03-11T22:05:22Z2020-12-08QUIRINO, Felipe Antunes. Automatic design of analog integrated circuits under process parameter variability. Orientador: Alessandro Gonçalves Girardi. 2020. 52p. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) - Universidade Federal do Pampa, Curso de Ciência da Computação, Alegrete, 2020.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5381Analog integrated circuits have a high range of applications, from interface circuits to signal processing. These systems need to be carefully designed in order to achieve a suitable trade-off between performance and power consumption. Traditional method of designing an analog circuit is based on trial-and-error. The designer uses his own experience for testing and modifying circuit parameters with the aid of an electrical simulator, until achieving the desired solution. However, the process of sizing the circuit requires several hours of design. In addition, a SPICE simulation can take a long time. The designer needs to wait for the end of the simulation, verify the results, and from there to do another simulation. An alternative for design automation is to abstract the circuit as an optimization problem. Using an optimization algorithm it is possible to explore the design space in the search for an optimum solution. This work demonstrates an optimization analysis performed with a low-voltage bulk-driven operational transconductance amplifier. Previous works demonstrated the modeling of this circuit as an optimization problem, but only for nominal values. However, a nominal analysis presents the performance disregarding process parameter variability that affect the performance. In the present work, we propose a design automation tool of analog integrated circuits using yield analysis, i.e, estimating performance with Monte Carlo electrical in order to evaluate the impact of process variability on circuit performance. In general, optimization algorithms present random variables (i.e., even with the same parameters, different seeds for the random number generator function may converge to different results). In order to further understanding this behavior, this work analyses the behavior of many executions of the algorithm. The adjustable parameter on the present algorithm (Cuckoo Search) is the number of nests. We performed the simulation 30 times for the same number of nests, varying the number of nests from 10 to 490 with a total of 1470 executions. As result, this work demonstrates a statistic analysis of all designs intending to find the best parameters for the tool. After getting the parameters, we analysed the circuit behavior for the worst, median and best cases, with the fixed parameter. The tool is able to design analog integrated circuits automatically, however without a guarantee of a feasible solution. For instance, in the worst case example, the algorithm converges to an unfeasible solution for practical terms. However, this could be mitigated with a large member of iterations or with more than one execution. In the best case, the amplifier designed with the optimization tool presents improvements in terms of (8.86nW of mean ± 0.22 of standard deviation in comparison to 18nW designed manually), PM (59.99 ∘ ± 10.15 in comparison to 52.50 ∘ ) and GBW (3.81kHz ± 0.65 in comparison to 1.88kHz).Os circuitos analógicos integrados possuem uma ampla gama de aplicações e necessitam ser projetados de modo a atender a requisitos conflitantes de desempenho e consumo de energia. O método tradicional de projeto de um circuito analógico é baseado em tentativa e erro. O projetista utiliza sua própria experiência para testar e modificar os parâmetros até encontrar uma solução satisfatória. A análise do desempenho do circuito é feita com o auxílio de simulação elétrica SPICE. Todavia, este processo exige muito tempo de projeto e a simulação SPICE pode demorar um longo tempo. O projetista necessita esperar o fim da simulação para analisar os resultados e, a partir disso, alterar os parâmetros do circuito e fazer outra simulação. Uma alternativa para a automação do projeto é abstrair a tarefa de dimensionamento dos circuitos como problema de otimização. Utilizam-se algoritmos de otimização para explorar o espaço de projeto em busca de uma solução otimizada. O presente trabalho propõe o uso de otimização para o projeto de síntese analógica, com base em um amplificador operacional de transcondutância de ultra baixa tensão alimentado pelo substrato. Trabalhos anteriores já foram realizados com este circuito, porém realizando apenas simulações nominais no circuito. Contudo, somente com análise nominal não é possível determinar o comportamento do circuito sob a influência de variações nos parâmetros do processo de fabricação. No presente trabalho, propomos uma ferramenta para automação do projeto do circuito utilizando a análise de rendimento, isto é, utilizando simulação Monte Carlo para estimar o rendimento do circuito após a fabricação. Além disso, os algoritmos utilizados para a otimização de circuitos possuem variáveis aleatórias (i.e., diferentes execuções podem divergir os resultados conforme a semente da função de geração de números aleatórios, mesmo tendo os mesmos parâmetros). Para prever este comportamento, o objeto de estudo analisa o comportamento de diversas execuções do algoritmo Cuckoo Search. Como resultado, demonstra-se uma análise estatística dos projetos. A partir desta análise, é possível escolher os melhores parâmetros para o algoritmo. Dado os parâmetros, analisou-se o comportamento dos circuitos para pior, mediano e melhor caso das execuções. A ferramenta consegue projetar circuitos analógicos integrados de forma automática, porém não há garantias que ela sempre converge em um resultado viável. Por exemplo, o resultado que o algoritmo converge no pior caso não é viável. Todavia, isso é mitigado com um grande número de execuções ou maior número de iterações no algoritmo. No melhor caso, os resultados do projeto do amplificador projetado com a ferramenta de otimização proposta alcançou melhoria em termos de Potência (8.86nW de média ± 0.22 de desvio padrão em comparação com 18nW em relação ao projetado de forma manual), Margem de fase (59.99 ∘ ± 10.15 em comparação 52.50 ∘ ) e de produto ganho largura de banda (3.81kHz ± 0.65 em comparação 1.88kHz).engUniversidade Federal do PampaUNIPAMPABrasilCampus AlegreteCNPQ::CIENCIAS EXATAS E DA TERRACiência da computaçãoAlgoritmosCircuitos integrados linearesComputer scienceAlgorithmsLinear integrated circuitsAutomatic design of analog integrated circuits under process parameter variabilityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPALICENSElicense.txtlicense.txttext/plain; charset=utf-81867https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/2/license.txtba21f2de58f2bed282863187a61580ffMD52ORIGINALFelipe Antunes Quirino - 2020.pdfFelipe Antunes Quirino - 2020.pdfapplication/pdf5716187https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/1/Felipe%20Antunes%20Quirino%20-%202020.pdf121f46f38ae52fe05adfbaef40669451MD51TEXTFelipe Antunes Quirino - 2020.pdf.txtFelipe Antunes Quirino - 2020.pdf.txtExtracted texttext/plain67688https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/3/Felipe%20Antunes%20Quirino%20-%202020.pdf.txt81eb55931b035e61499616d6ef4a92a6MD53riu/53812021-03-12 03:06:46.509oai:repositorio.unipampa.edu.br:riu/5381TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVU5JUEFNUEEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSAgYSBVTklQQU1QQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCAKZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiAKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIApkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgcHVibGljYcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIApvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVU5JUEFNUEEgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIApuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byAKb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gCk9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIApFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVTklQQU1QQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyAKYXV0b3JhaXMgZGEgcHVibGljYcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2021-03-12T06:06:46Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false
dc.title.pt_BR.fl_str_mv Automatic design of analog integrated circuits under process parameter variability
title Automatic design of analog integrated circuits under process parameter variability
spellingShingle Automatic design of analog integrated circuits under process parameter variability
Quirino, Felipe Antunes
CNPQ::CIENCIAS EXATAS E DA TERRA
Ciência da computação
Algoritmos
Circuitos integrados lineares
Computer science
Algorithms
Linear integrated circuits
title_short Automatic design of analog integrated circuits under process parameter variability
title_full Automatic design of analog integrated circuits under process parameter variability
title_fullStr Automatic design of analog integrated circuits under process parameter variability
title_full_unstemmed Automatic design of analog integrated circuits under process parameter variability
title_sort Automatic design of analog integrated circuits under process parameter variability
author Quirino, Felipe Antunes
author_facet Quirino, Felipe Antunes
author_role author
dc.contributor.advisor1.fl_str_mv Girardi, Alessandro Gonçalves
dc.contributor.author.fl_str_mv Quirino, Felipe Antunes
contributor_str_mv Girardi, Alessandro Gonçalves
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Ciência da computação
Algoritmos
Circuitos integrados lineares
Computer science
Algorithms
Linear integrated circuits
dc.subject.por.fl_str_mv Ciência da computação
Algoritmos
Circuitos integrados lineares
Computer science
Algorithms
Linear integrated circuits
description Analog integrated circuits have a high range of applications, from interface circuits to signal processing. These systems need to be carefully designed in order to achieve a suitable trade-off between performance and power consumption. Traditional method of designing an analog circuit is based on trial-and-error. The designer uses his own experience for testing and modifying circuit parameters with the aid of an electrical simulator, until achieving the desired solution. However, the process of sizing the circuit requires several hours of design. In addition, a SPICE simulation can take a long time. The designer needs to wait for the end of the simulation, verify the results, and from there to do another simulation. An alternative for design automation is to abstract the circuit as an optimization problem. Using an optimization algorithm it is possible to explore the design space in the search for an optimum solution. This work demonstrates an optimization analysis performed with a low-voltage bulk-driven operational transconductance amplifier. Previous works demonstrated the modeling of this circuit as an optimization problem, but only for nominal values. However, a nominal analysis presents the performance disregarding process parameter variability that affect the performance. In the present work, we propose a design automation tool of analog integrated circuits using yield analysis, i.e, estimating performance with Monte Carlo electrical in order to evaluate the impact of process variability on circuit performance. In general, optimization algorithms present random variables (i.e., even with the same parameters, different seeds for the random number generator function may converge to different results). In order to further understanding this behavior, this work analyses the behavior of many executions of the algorithm. The adjustable parameter on the present algorithm (Cuckoo Search) is the number of nests. We performed the simulation 30 times for the same number of nests, varying the number of nests from 10 to 490 with a total of 1470 executions. As result, this work demonstrates a statistic analysis of all designs intending to find the best parameters for the tool. After getting the parameters, we analysed the circuit behavior for the worst, median and best cases, with the fixed parameter. The tool is able to design analog integrated circuits automatically, however without a guarantee of a feasible solution. For instance, in the worst case example, the algorithm converges to an unfeasible solution for practical terms. However, this could be mitigated with a large member of iterations or with more than one execution. In the best case, the amplifier designed with the optimization tool presents improvements in terms of (8.86nW of mean ± 0.22 of standard deviation in comparison to 18nW designed manually), PM (59.99 ∘ ± 10.15 in comparison to 52.50 ∘ ) and GBW (3.81kHz ± 0.65 in comparison to 1.88kHz).
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-08
dc.date.accessioned.fl_str_mv 2021-03-11T22:05:22Z
dc.date.available.fl_str_mv 2021-03-11
2021-03-11T22:05:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv QUIRINO, Felipe Antunes. Automatic design of analog integrated circuits under process parameter variability. Orientador: Alessandro Gonçalves Girardi. 2020. 52p. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) - Universidade Federal do Pampa, Curso de Ciência da Computação, Alegrete, 2020.
dc.identifier.uri.fl_str_mv http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5381
identifier_str_mv QUIRINO, Felipe Antunes. Automatic design of analog integrated circuits under process parameter variability. Orientador: Alessandro Gonçalves Girardi. 2020. 52p. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) - Universidade Federal do Pampa, Curso de Ciência da Computação, Alegrete, 2020.
url http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5381
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pampa
dc.publisher.initials.fl_str_mv UNIPAMPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Campus Alegrete
publisher.none.fl_str_mv Universidade Federal do Pampa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIPAMPA
instname:Universidade Federal do Pampa (UNIPAMPA)
instacron:UNIPAMPA
instname_str Universidade Federal do Pampa (UNIPAMPA)
instacron_str UNIPAMPA
institution UNIPAMPA
reponame_str Repositório Institucional da UNIPAMPA
collection Repositório Institucional da UNIPAMPA
bitstream.url.fl_str_mv https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/2/license.txt
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/1/Felipe%20Antunes%20Quirino%20-%202020.pdf
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5381/3/Felipe%20Antunes%20Quirino%20-%202020.pdf.txt
bitstream.checksum.fl_str_mv ba21f2de58f2bed282863187a61580ff
121f46f38ae52fe05adfbaef40669451
81eb55931b035e61499616d6ef4a92a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)
repository.mail.fl_str_mv sisbi@unipampa.edu.br
_version_ 1813274832413917184