Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte

Detalhes bibliográficos
Autor(a) principal: Santos, Carlos Alexandre Silva dos
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIPAMPA
Texto Completo: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
Resumo: O reconhecimento automático de imagens de marca de gado é uma necessidade para os órgãos governamentais responsáveis por esta atividade. Para auxiliar neste processo, este trabalho propõe uma arquitetura que seja capaz de realizar o reconhecimento automático dessas marcas. Nesse sentido, uma arquitetura foi implementada e experimentos foram realizados com dois métodos: Bag-of-Features e Redes Neurais Convolucionais (CNN). No método Bag-of-Features foi utilizado o algoritmo SURF para extração de pontos de interesse das imagens e para criação do agrupa mento de palavras visuais foi utilizado o clustering K-means. O método Bag-of-Features apresentou acurácia geral de 86,02% e tempo de processamento de 56,705 segundos para um conjunto de 12 marcas e 540 imagens. No método CNN foi criada uma rede completa com 5 camadas convolucionais e 3 camadas totalmente conectadas. A 1 ª camada convolucional teve como entrada imagens transformadas para o formato de cores RGB. Para ativação da CNN foi utilizada a função ReLU, e a técnica de maxpooling para redução. O método CNN apresentou acurácia geral de 93,28% e tempo de processamento de 12,716 segundos para um conjunto de 12 marcas e 540 imagens. O método CNN consiste de seis etapas: a) selecionar o banco de imagens; b) selecionar o modelo de CNN pré-treinado; c) pré-processar as imagens e aplicar a CNN; d) extrair as características das imagens; e) treinar e classificar as imagens utilizando SVM; f) avaliar os resultados da classificação. Os experimentos foram realizados utilizando o conjunto de imagens de marcas de gado de uma prefeitura municipal. Para avaliação do desempenho da arquitetura proposta foram utilizadas as métricas de acurácia geral, recall, precisão, coeficiente Kappa e tempo de processamento. Os resultados obtidos foram satisfatórios, nos quais o método CNN apresentou os melhores resultados em comparação ao método Bag-of-Features, sendo 7,26% mais preciso e 43,989 segundos mais rápido. Também foram realizados experimentos com o método CNN em conjuntos de marcas com número maior de amostras, o qual obteve taxas de acurácia geral de 94,90% para 12 marcas e 840 imagens, e 80,57% para 500 marcas e 22.500 imagens, respectivamente.
id UNIP_5bac9b0817f27e4b8e563ab6029f9e9d
oai_identifier_str oai:repositorio.unipampa.edu.br:riu/2028
network_acronym_str UNIP
network_name_str Repositório Institucional da UNIPAMPA
repository_id_str
spelling Welfer, DanielSantos, Carlos Alexandre Silva dos2017-10-31T18:24:21Z2017-10-31T18:24:21Z2017-09-26SANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028O reconhecimento automático de imagens de marca de gado é uma necessidade para os órgãos governamentais responsáveis por esta atividade. Para auxiliar neste processo, este trabalho propõe uma arquitetura que seja capaz de realizar o reconhecimento automático dessas marcas. Nesse sentido, uma arquitetura foi implementada e experimentos foram realizados com dois métodos: Bag-of-Features e Redes Neurais Convolucionais (CNN). No método Bag-of-Features foi utilizado o algoritmo SURF para extração de pontos de interesse das imagens e para criação do agrupa mento de palavras visuais foi utilizado o clustering K-means. O método Bag-of-Features apresentou acurácia geral de 86,02% e tempo de processamento de 56,705 segundos para um conjunto de 12 marcas e 540 imagens. No método CNN foi criada uma rede completa com 5 camadas convolucionais e 3 camadas totalmente conectadas. A 1 ª camada convolucional teve como entrada imagens transformadas para o formato de cores RGB. Para ativação da CNN foi utilizada a função ReLU, e a técnica de maxpooling para redução. O método CNN apresentou acurácia geral de 93,28% e tempo de processamento de 12,716 segundos para um conjunto de 12 marcas e 540 imagens. O método CNN consiste de seis etapas: a) selecionar o banco de imagens; b) selecionar o modelo de CNN pré-treinado; c) pré-processar as imagens e aplicar a CNN; d) extrair as características das imagens; e) treinar e classificar as imagens utilizando SVM; f) avaliar os resultados da classificação. Os experimentos foram realizados utilizando o conjunto de imagens de marcas de gado de uma prefeitura municipal. Para avaliação do desempenho da arquitetura proposta foram utilizadas as métricas de acurácia geral, recall, precisão, coeficiente Kappa e tempo de processamento. Os resultados obtidos foram satisfatórios, nos quais o método CNN apresentou os melhores resultados em comparação ao método Bag-of-Features, sendo 7,26% mais preciso e 43,989 segundos mais rápido. Também foram realizados experimentos com o método CNN em conjuntos de marcas com número maior de amostras, o qual obteve taxas de acurácia geral de 94,90% para 12 marcas e 840 imagens, e 80,57% para 500 marcas e 22.500 imagens, respectivamente.The automatic recognition of cattle branding is a necessity for government agencies responsible for this activity. In order to improve this process, this work proposes an architecture which is able of performing the automatic recognition of these brandings. The proposed software implements two methods, namely: Bag-of-Features and CNN. For the Bag-of-Features method, the SURF algorithm was used in order to extract points of interest from the images. We also used K-means clustering to create the visual word cluster. The Bag-of-Features method presented a overall accuracy of 86.02% and a processing time of 56.705 seconds in a set containing 12 brandings and 540 images. For the CNN method, we created a complete network with five convolutional layers, and three layers fully connected. For the 1st convolutional layer we converted the input images into the RGB color for mat. In order to activate the CNN, we performed an application of the ReLU, and used the maxpooling technique for the reduction. The CNN method presented 93.28% of overall accuracy and a processing time of 12.716 seconds for a set containing 12 brandings and 540 images. The CNN method includes six steps: a) selecting the image database; b) selecting the pre-trained CNN model; c) pre-processing the images and applying the CNN; d) extracting the features from the images; e) training and classifying the images using SVM; f) assessing the classification results. The experiments were performed using the cattle branding image set of a City Hall. Metrics of overall accuracy, recall, precision, Kappa coefficient, and processing time were used in order to assess the performance of the proposed architecture. Results were satisfactory. The CNN method showed the best results when compared to Bag-of-Features method, considering that it was 7.26% more accurate and 43.989 seconds faster. Also, some experiments were conducted with the CNN method for sets of brandings with a greater number of samples. These larger sets presented a overall accuracy rate of 94.90% for 12 brandings and 840 images, and 80.57% for 500 brandings and 22,500 images, respectively.porUniversidade Federal do PampaMestrado Acadêmico em Engenharia ElétricaUNIPAMPABrasilCampus AlegreteCNPQ::ENGENHARIASAprendizagem profundaRedes neurais convolucionaisMáquinas de vetores de suporteReconhecimento de imagensMarcas de gadoEngenharia elétricaDeep learningConvolutional neural networksSupport vector machinesImage recognitionCattle brandingReconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPAORIGINALCarlos_Alexandre Silva_dos Santos - 2017.pdfCarlos_Alexandre Silva_dos Santos - 2017.pdfapplication/pdf27850839https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/1/Carlos_Alexandre%20Silva_dos%20Santos%20-%202017.pdfc4399fa8396d3b558becbfa67b7dd777MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52TEXTCarlos_Alexandre Silva_dos Santos - 2017.pdf.txtCarlos_Alexandre Silva_dos Santos - 2017.pdf.txtExtracted texttext/plain217861https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/3/Carlos_Alexandre%20Silva_dos%20Santos%20-%202017.pdf.txt8b4d68f69f76b847dc54485b42e3530eMD53riu/20282018-06-21 14:01:56.959oai:repositorio.unipampa.edu.br:riu/2028TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2018-06-21T17:01:56Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false
dc.title.pt_BR.fl_str_mv Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
spellingShingle Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
Santos, Carlos Alexandre Silva dos
CNPQ::ENGENHARIAS
Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
title_short Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_full Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_fullStr Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_full_unstemmed Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_sort Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
author Santos, Carlos Alexandre Silva dos
author_facet Santos, Carlos Alexandre Silva dos
author_role author
dc.contributor.advisor1.fl_str_mv Welfer, Daniel
dc.contributor.author.fl_str_mv Santos, Carlos Alexandre Silva dos
contributor_str_mv Welfer, Daniel
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
dc.subject.por.fl_str_mv Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
description O reconhecimento automático de imagens de marca de gado é uma necessidade para os órgãos governamentais responsáveis por esta atividade. Para auxiliar neste processo, este trabalho propõe uma arquitetura que seja capaz de realizar o reconhecimento automático dessas marcas. Nesse sentido, uma arquitetura foi implementada e experimentos foram realizados com dois métodos: Bag-of-Features e Redes Neurais Convolucionais (CNN). No método Bag-of-Features foi utilizado o algoritmo SURF para extração de pontos de interesse das imagens e para criação do agrupa mento de palavras visuais foi utilizado o clustering K-means. O método Bag-of-Features apresentou acurácia geral de 86,02% e tempo de processamento de 56,705 segundos para um conjunto de 12 marcas e 540 imagens. No método CNN foi criada uma rede completa com 5 camadas convolucionais e 3 camadas totalmente conectadas. A 1 ª camada convolucional teve como entrada imagens transformadas para o formato de cores RGB. Para ativação da CNN foi utilizada a função ReLU, e a técnica de maxpooling para redução. O método CNN apresentou acurácia geral de 93,28% e tempo de processamento de 12,716 segundos para um conjunto de 12 marcas e 540 imagens. O método CNN consiste de seis etapas: a) selecionar o banco de imagens; b) selecionar o modelo de CNN pré-treinado; c) pré-processar as imagens e aplicar a CNN; d) extrair as características das imagens; e) treinar e classificar as imagens utilizando SVM; f) avaliar os resultados da classificação. Os experimentos foram realizados utilizando o conjunto de imagens de marcas de gado de uma prefeitura municipal. Para avaliação do desempenho da arquitetura proposta foram utilizadas as métricas de acurácia geral, recall, precisão, coeficiente Kappa e tempo de processamento. Os resultados obtidos foram satisfatórios, nos quais o método CNN apresentou os melhores resultados em comparação ao método Bag-of-Features, sendo 7,26% mais preciso e 43,989 segundos mais rápido. Também foram realizados experimentos com o método CNN em conjuntos de marcas com número maior de amostras, o qual obteve taxas de acurácia geral de 94,90% para 12 marcas e 840 imagens, e 80,57% para 500 marcas e 22.500 imagens, respectivamente.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-10-31T18:24:21Z
dc.date.available.fl_str_mv 2017-10-31T18:24:21Z
dc.date.issued.fl_str_mv 2017-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
dc.identifier.uri.fl_str_mv http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
identifier_str_mv SANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
url http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pampa
dc.publisher.program.fl_str_mv Mestrado Acadêmico em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UNIPAMPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Campus Alegrete
publisher.none.fl_str_mv Universidade Federal do Pampa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIPAMPA
instname:Universidade Federal do Pampa (UNIPAMPA)
instacron:UNIPAMPA
instname_str Universidade Federal do Pampa (UNIPAMPA)
instacron_str UNIPAMPA
institution UNIPAMPA
reponame_str Repositório Institucional da UNIPAMPA
collection Repositório Institucional da UNIPAMPA
bitstream.url.fl_str_mv https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/1/Carlos_Alexandre%20Silva_dos%20Santos%20-%202017.pdf
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/2/license.txt
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2028/3/Carlos_Alexandre%20Silva_dos%20Santos%20-%202017.pdf.txt
bitstream.checksum.fl_str_mv c4399fa8396d3b558becbfa67b7dd777
43cd690d6a359e86c1fe3d5b7cba0c9b
8b4d68f69f76b847dc54485b42e3530e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)
repository.mail.fl_str_mv sisbi@unipampa.edu.br
_version_ 1813274807079272448