Real orthogonal polynomials in frequency analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1090/S0025-5718-04-01672-2 |
Texto Completo: | http://dx.doi.org/10.1090/S0025-5718-04-01672-2 http://hdl.handle.net/11449/21707 |
Resumo: | We study the use of para-orthogonal polynomials in solving the frequency analysis problem. Through a transformation of Delsarte and Genin, we present an approach for the frequency analysis by using the zeros and Christoffel numbers of polynomials orthogonal on the real line. This leads to a simple and fast algorithm for the estimation of frequencies. We also provide a new method, faster than the Levinson algorithm, for the determination of the reflection coefficients of the corresponding real Szego polynomials from the given moments. |
id |
UNSP_176bf602351e2fd3f8849bef2d0b00ca |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/21707 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Real orthogonal polynomials in frequency analysisfrequency analysis problemfrequency estimationOrthogonal polynomialsSzego polynomialspara-orthogonal polynomialsquadratureWe study the use of para-orthogonal polynomials in solving the frequency analysis problem. Through a transformation of Delsarte and Genin, we present an approach for the frequency analysis by using the zeros and Christoffel numbers of polynomials orthogonal on the real line. This leads to a simple and fast algorithm for the estimation of frequencies. We also provide a new method, faster than the Levinson algorithm, for the determination of the reflection coefficients of the corresponding real Szego polynomials from the given moments.Univ Estadual Paulista, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 São Paulo, BrazilUniv Cent Florida, Dept Math, Orlando, FL 32816 USAUniv Estadual Paulista, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 São Paulo, BrazilAmer Mathematical SocUniversidade Estadual Paulista (Unesp)Univ Cent FloridaBracciali, Cleonice Fátima [UNESP]Li, XRanga, A. S.2014-05-20T14:01:31Z2014-05-20T14:01:31Z2004-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article341-362http://dx.doi.org/10.1090/S0025-5718-04-01672-2Mathematics of Computation. Providence: Amer Mathematical Soc, v. 74, n. 249, p. 341-362, 2004.0025-5718http://hdl.handle.net/11449/2170710.1090/S0025-5718-04-01672-2WOS:000224383800016830032245262246735871233097456100000-0002-6823-4204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMathematics of Computation1.7501,939info:eu-repo/semantics/openAccess2022-02-09T12:29:30Zoai:repositorio.unesp.br:11449/21707Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:09.755069Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Real orthogonal polynomials in frequency analysis |
title |
Real orthogonal polynomials in frequency analysis |
spellingShingle |
Real orthogonal polynomials in frequency analysis Real orthogonal polynomials in frequency analysis Bracciali, Cleonice Fátima [UNESP] frequency analysis problem frequency estimation Orthogonal polynomials Szego polynomials para-orthogonal polynomials quadrature Bracciali, Cleonice Fátima [UNESP] frequency analysis problem frequency estimation Orthogonal polynomials Szego polynomials para-orthogonal polynomials quadrature |
title_short |
Real orthogonal polynomials in frequency analysis |
title_full |
Real orthogonal polynomials in frequency analysis |
title_fullStr |
Real orthogonal polynomials in frequency analysis Real orthogonal polynomials in frequency analysis |
title_full_unstemmed |
Real orthogonal polynomials in frequency analysis Real orthogonal polynomials in frequency analysis |
title_sort |
Real orthogonal polynomials in frequency analysis |
author |
Bracciali, Cleonice Fátima [UNESP] |
author_facet |
Bracciali, Cleonice Fátima [UNESP] Bracciali, Cleonice Fátima [UNESP] Li, X Ranga, A. S. Li, X Ranga, A. S. |
author_role |
author |
author2 |
Li, X Ranga, A. S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Univ Cent Florida |
dc.contributor.author.fl_str_mv |
Bracciali, Cleonice Fátima [UNESP] Li, X Ranga, A. S. |
dc.subject.por.fl_str_mv |
frequency analysis problem frequency estimation Orthogonal polynomials Szego polynomials para-orthogonal polynomials quadrature |
topic |
frequency analysis problem frequency estimation Orthogonal polynomials Szego polynomials para-orthogonal polynomials quadrature |
description |
We study the use of para-orthogonal polynomials in solving the frequency analysis problem. Through a transformation of Delsarte and Genin, we present an approach for the frequency analysis by using the zeros and Christoffel numbers of polynomials orthogonal on the real line. This leads to a simple and fast algorithm for the estimation of frequencies. We also provide a new method, faster than the Levinson algorithm, for the determination of the reflection coefficients of the corresponding real Szego polynomials from the given moments. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01 2014-05-20T14:01:31Z 2014-05-20T14:01:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1090/S0025-5718-04-01672-2 Mathematics of Computation. Providence: Amer Mathematical Soc, v. 74, n. 249, p. 341-362, 2004. 0025-5718 http://hdl.handle.net/11449/21707 10.1090/S0025-5718-04-01672-2 WOS:000224383800016 8300322452622467 3587123309745610 0000-0002-6823-4204 |
url |
http://dx.doi.org/10.1090/S0025-5718-04-01672-2 http://hdl.handle.net/11449/21707 |
identifier_str_mv |
Mathematics of Computation. Providence: Amer Mathematical Soc, v. 74, n. 249, p. 341-362, 2004. 0025-5718 10.1090/S0025-5718-04-01672-2 WOS:000224383800016 8300322452622467 3587123309745610 0000-0002-6823-4204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Mathematics of Computation 1.750 1,939 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
341-362 |
dc.publisher.none.fl_str_mv |
Amer Mathematical Soc |
publisher.none.fl_str_mv |
Amer Mathematical Soc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822182482820202496 |
dc.identifier.doi.none.fl_str_mv |
10.1090/S0025-5718-04-01672-2 |