Multi-stage population models applied to insect dynamics

Detalhes bibliográficos
Autor(a) principal: Benedito, Antone dos Santos
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/192335
Resumo: This thesis presents two manuscripts previously sent to publication in scientific journals. In the first manuscript, a delay differential equation model is developed to study the dynamics of two Aedes aegypti mosquito populations: infected by the intracellular bacteria Wolbachia and non-infected (wild) individuals. All the steady states of the system are determined, namely extinction of both populations, extinction of the infected population and persistence of the non-infected one, and coexistence. Their local stability is analyzed, including Hopf bifurcation, which promotes periodic solutions around the nontrivial equilibrium points. Finally, one investigates the global asymptotic stability of the trivial solution. In the second manuscript, after rearing soybean looper Chrysodeixis includens in laboratory conditions, thermal requirements for this insect-pest are estimated, from linear and nonlinear regression models, as well as the intrinsic growth rate. This parameter depends on the life-history traits and can provide a measure of population viability of the species.
id UNSP_026c5ad113e4d4ceffbf339554fe6504
oai_identifier_str oai:repositorio.unesp.br:11449/192335
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Multi-stage population models applied to insect dynamicsMulti-stage population models applied to insect dynamicsInsectsAedes aegyptiDelay differential equationsWolbachiaChrysodeixisSoybean looperNonlinear regressionIntrinsic growth rateThermal requirementsThis thesis presents two manuscripts previously sent to publication in scientific journals. In the first manuscript, a delay differential equation model is developed to study the dynamics of two Aedes aegypti mosquito populations: infected by the intracellular bacteria Wolbachia and non-infected (wild) individuals. All the steady states of the system are determined, namely extinction of both populations, extinction of the infected population and persistence of the non-infected one, and coexistence. Their local stability is analyzed, including Hopf bifurcation, which promotes periodic solutions around the nontrivial equilibrium points. Finally, one investigates the global asymptotic stability of the trivial solution. In the second manuscript, after rearing soybean looper Chrysodeixis includens in laboratory conditions, thermal requirements for this insect-pest are estimated, from linear and nonlinear regression models, as well as the intrinsic growth rate. This parameter depends on the life-history traits and can provide a measure of population viability of the species.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 001Universidade Estadual Paulista (Unesp)Ferreira, Cláudia Pio [UNESP]Fernandes, Odair Aparecido [UNESP]Universidade Estadual Paulista (Unesp)Benedito, Antone dos Santos2020-04-24T20:07:13Z2020-04-24T20:07:13Z2020-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/19233500093020433004064083P2145828828775788020527496982046170000-0003-3489-47540000-0002-9404-6098enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-01-23T07:08:03Zoai:repositorio.unesp.br:11449/192335Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:46:18.080291Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Multi-stage population models applied to insect dynamics
Multi-stage population models applied to insect dynamics
title Multi-stage population models applied to insect dynamics
spellingShingle Multi-stage population models applied to insect dynamics
Benedito, Antone dos Santos
Insects
Aedes aegypti
Delay differential equations
Wolbachia
Chrysodeixis
Soybean looper
Nonlinear regression
Intrinsic growth rate
Thermal requirements
title_short Multi-stage population models applied to insect dynamics
title_full Multi-stage population models applied to insect dynamics
title_fullStr Multi-stage population models applied to insect dynamics
title_full_unstemmed Multi-stage population models applied to insect dynamics
title_sort Multi-stage population models applied to insect dynamics
author Benedito, Antone dos Santos
author_facet Benedito, Antone dos Santos
author_role author
dc.contributor.none.fl_str_mv Ferreira, Cláudia Pio [UNESP]
Fernandes, Odair Aparecido [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Benedito, Antone dos Santos
dc.subject.por.fl_str_mv Insects
Aedes aegypti
Delay differential equations
Wolbachia
Chrysodeixis
Soybean looper
Nonlinear regression
Intrinsic growth rate
Thermal requirements
topic Insects
Aedes aegypti
Delay differential equations
Wolbachia
Chrysodeixis
Soybean looper
Nonlinear regression
Intrinsic growth rate
Thermal requirements
description This thesis presents two manuscripts previously sent to publication in scientific journals. In the first manuscript, a delay differential equation model is developed to study the dynamics of two Aedes aegypti mosquito populations: infected by the intracellular bacteria Wolbachia and non-infected (wild) individuals. All the steady states of the system are determined, namely extinction of both populations, extinction of the infected population and persistence of the non-infected one, and coexistence. Their local stability is analyzed, including Hopf bifurcation, which promotes periodic solutions around the nontrivial equilibrium points. Finally, one investigates the global asymptotic stability of the trivial solution. In the second manuscript, after rearing soybean looper Chrysodeixis includens in laboratory conditions, thermal requirements for this insect-pest are estimated, from linear and nonlinear regression models, as well as the intrinsic growth rate. This parameter depends on the life-history traits and can provide a measure of population viability of the species.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-24T20:07:13Z
2020-04-24T20:07:13Z
2020-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/192335
000930204
33004064083P2
1458288287757880
2052749698204617
0000-0003-3489-4754
0000-0002-9404-6098
url http://hdl.handle.net/11449/192335
identifier_str_mv 000930204
33004064083P2
1458288287757880
2052749698204617
0000-0003-3489-4754
0000-0002-9404-6098
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129549594001408