A Case Study of Applying the Classification Task for Students Performance Prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2018.8291470 http://hdl.handle.net/11449/221018 |
Resumo: | In this study the application of data mining in an academic database is presented, aiming the identification of the reasons of student dropouts by preventing failures in Programming Language class from Internet Systems course of Federal Institute of Mato Grosso do Sul (IFMS). The classification task is used, as well as decision tree technique and J4.8 algorithm, wich is run with three different options and, in each option pruned and unpruned decision trees are generated. The results show that the most realistic test is Cross-validation, with a success rate of 75.8% in classification, and that it is possible to prevent student failure in specific cases and as a consequence, to lower the number of student dropouts by failure. |
id |
UNSP_03386c8f1c76d4bf6c01fcba69892ae0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221018 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Case Study of Applying the Classification Task for Students Performance Predictionacademic databaseclassification taskData miningIn this study the application of data mining in an academic database is presented, aiming the identification of the reasons of student dropouts by preventing failures in Programming Language class from Internet Systems course of Federal Institute of Mato Grosso do Sul (IFMS). The classification task is used, as well as decision tree technique and J4.8 algorithm, wich is run with three different options and, in each option pruned and unpruned decision trees are generated. The results show that the most realistic test is Cross-validation, with a success rate of 75.8% in classification, and that it is possible to prevent student failure in specific cases and as a consequence, to lower the number of student dropouts by failure.Instituto Federal de Mato Grosso Do sulUniversidade Estadual Paulista Júlio de Mesquita FilhoUniversidade Estadual Paulista Júlio de Mesquita FilhoInstituto Federal de Mato Grosso Do sulUniversidade Estadual Paulista (UNESP)Guerra, M. S.Neto, H. AsseissOliveira, S. A. [UNESP]2022-04-28T19:08:43Z2022-04-28T19:08:43Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article172-177http://dx.doi.org/10.1109/TLA.2018.8291470IEEE Latin America Transactions, v. 16, n. 1, p. 172-177, 2018.1548-0992http://hdl.handle.net/11449/22101810.1109/TLA.2018.82914702-s2.0-85042303231Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2022-04-28T19:08:43Zoai:repositorio.unesp.br:11449/221018Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:33:02.908074Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Case Study of Applying the Classification Task for Students Performance Prediction |
title |
A Case Study of Applying the Classification Task for Students Performance Prediction |
spellingShingle |
A Case Study of Applying the Classification Task for Students Performance Prediction Guerra, M. S. academic database classification task Data mining |
title_short |
A Case Study of Applying the Classification Task for Students Performance Prediction |
title_full |
A Case Study of Applying the Classification Task for Students Performance Prediction |
title_fullStr |
A Case Study of Applying the Classification Task for Students Performance Prediction |
title_full_unstemmed |
A Case Study of Applying the Classification Task for Students Performance Prediction |
title_sort |
A Case Study of Applying the Classification Task for Students Performance Prediction |
author |
Guerra, M. S. |
author_facet |
Guerra, M. S. Neto, H. Asseiss Oliveira, S. A. [UNESP] |
author_role |
author |
author2 |
Neto, H. Asseiss Oliveira, S. A. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Instituto Federal de Mato Grosso Do sul Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Guerra, M. S. Neto, H. Asseiss Oliveira, S. A. [UNESP] |
dc.subject.por.fl_str_mv |
academic database classification task Data mining |
topic |
academic database classification task Data mining |
description |
In this study the application of data mining in an academic database is presented, aiming the identification of the reasons of student dropouts by preventing failures in Programming Language class from Internet Systems course of Federal Institute of Mato Grosso do Sul (IFMS). The classification task is used, as well as decision tree technique and J4.8 algorithm, wich is run with three different options and, in each option pruned and unpruned decision trees are generated. The results show that the most realistic test is Cross-validation, with a success rate of 75.8% in classification, and that it is possible to prevent student failure in specific cases and as a consequence, to lower the number of student dropouts by failure. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2022-04-28T19:08:43Z 2022-04-28T19:08:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2018.8291470 IEEE Latin America Transactions, v. 16, n. 1, p. 172-177, 2018. 1548-0992 http://hdl.handle.net/11449/221018 10.1109/TLA.2018.8291470 2-s2.0-85042303231 |
url |
http://dx.doi.org/10.1109/TLA.2018.8291470 http://hdl.handle.net/11449/221018 |
identifier_str_mv |
IEEE Latin America Transactions, v. 16, n. 1, p. 172-177, 2018. 1548-0992 10.1109/TLA.2018.8291470 2-s2.0-85042303231 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IEEE Latin America Transactions |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
172-177 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129084226535424 |