Polynomials generated by a three term recurrence relation: bounds for complex zeros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.laa.2004.11.005 http://hdl.handle.net/11449/21746 |
Resumo: | This paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved. |
id |
UNSP_03d824e2c452f52ec981fe2bd8430426 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/21746 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Polynomials generated by a three term recurrence relation: bounds for complex zerosThree term recurrence relationseigenvalue problemszeros of polynomialsThis paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved.Univ Estadual Paulista, IBILCE, Dept Ciências Computacao & Estat, Sao Jose do Rio Preto, SP, BrazilUniv São Paulo, ICMC, BR-13560970 Sao Carlos, BrazilUniv Estadual Paulista, IBILCE, Dept Ciências Computacao & Estat, Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)da Silva, A. P.Ranga, A. S.2014-05-20T14:01:37Z2014-05-20T14:01:37Z2005-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article299-324application/pdfhttp://dx.doi.org/10.1016/j.laa.2004.11.005Linear Algebra and Its Applications. New York: Elsevier B.V., v. 397, p. 299-324, 2005.0024-3795http://hdl.handle.net/11449/2174610.1016/j.laa.2004.11.005WOS:000227016000019WOS000227016000019.pdf3587123309745610Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLinear Algebra and Its Applications0.9720,994info:eu-repo/semantics/openAccess2023-11-23T06:10:16Zoai:repositorio.unesp.br:11449/21746Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:28:39.271104Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
title |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
spellingShingle |
Polynomials generated by a three term recurrence relation: bounds for complex zeros da Silva, A. P. Three term recurrence relations eigenvalue problems zeros of polynomials |
title_short |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
title_full |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
title_fullStr |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
title_full_unstemmed |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
title_sort |
Polynomials generated by a three term recurrence relation: bounds for complex zeros |
author |
da Silva, A. P. |
author_facet |
da Silva, A. P. Ranga, A. S. |
author_role |
author |
author2 |
Ranga, A. S. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
da Silva, A. P. Ranga, A. S. |
dc.subject.por.fl_str_mv |
Three term recurrence relations eigenvalue problems zeros of polynomials |
topic |
Three term recurrence relations eigenvalue problems zeros of polynomials |
description |
This paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-03-01 2014-05-20T14:01:37Z 2014-05-20T14:01:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.laa.2004.11.005 Linear Algebra and Its Applications. New York: Elsevier B.V., v. 397, p. 299-324, 2005. 0024-3795 http://hdl.handle.net/11449/21746 10.1016/j.laa.2004.11.005 WOS:000227016000019 WOS000227016000019.pdf 3587123309745610 |
url |
http://dx.doi.org/10.1016/j.laa.2004.11.005 http://hdl.handle.net/11449/21746 |
identifier_str_mv |
Linear Algebra and Its Applications. New York: Elsevier B.V., v. 397, p. 299-324, 2005. 0024-3795 10.1016/j.laa.2004.11.005 WOS:000227016000019 WOS000227016000019.pdf 3587123309745610 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Linear Algebra and Its Applications 0.972 0,994 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
299-324 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128937267560448 |