Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s12220-022-00881-8 http://hdl.handle.net/11449/230405 |
Resumo: | In this paper, we use minimax methods, comparison arguments, and an approximation result to show the existence and multiplicity of solutions for the following class of problems: {-Δ1v=λf(v)inΩ,v≥0inΩ,v=0on∂Ω,where Ω is a bounded smooth domain of RN, N≥ 1 , λ> 0 is a parameter and the non-linearity f: R→ R is a continuous function that can change sign and satisfies an area condition. |
id |
UNSP_054adeb92e151e82b174ced7125e5dd3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/230405 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator1-Laplacian operatorQuasilinear elliptic operatorIn this paper, we use minimax methods, comparison arguments, and an approximation result to show the existence and multiplicity of solutions for the following class of problems: {-Δ1v=λf(v)inΩ,v≥0inΩ,v=0on∂Ω,where Ω is a bounded smooth domain of RN, N≥ 1 , λ> 0 is a parameter and the non-linearity f: R→ R is a continuous function that can change sign and satisfies an area condition.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Faculdade de Matemática Universidade Federal do Pará, PADepartamento de Matemática Universidade de Brasília, DFDepartamento de Matemática e Computação Faculdade de Ciência e Tecnologia Universidade Estadual Paulista, SPDepartamento de Matemática e Computação Faculdade de Ciência e Tecnologia Universidade Estadual Paulista, SPFAPESP: 2021/04158-4CNPq: 303788/2018-6Universidade Federal do Pará (UFPA)Universidade de Brasília (UnB)Universidade Estadual Paulista (UNESP)Santos, Gelson dosFigueiredo, Giovany M.Pimenta, Marcos T. O. [UNESP]2022-04-29T08:39:48Z2022-04-29T08:39:48Z2022-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s12220-022-00881-8Journal of Geometric Analysis, v. 32, n. 4, 2022.1050-6926http://hdl.handle.net/11449/23040510.1007/s12220-022-00881-82-s2.0-85124753857Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Geometric Analysisinfo:eu-repo/semantics/openAccess2024-06-19T14:31:53Zoai:repositorio.unesp.br:11449/230405Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:03:49.346277Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
title |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
spellingShingle |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator Santos, Gelson dos 1-Laplacian operator Quasilinear elliptic operator |
title_short |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
title_full |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
title_fullStr |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
title_full_unstemmed |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
title_sort |
Multiple Ordered Solutions for a Class of Problems Involving the 1-Laplacian Operator |
author |
Santos, Gelson dos |
author_facet |
Santos, Gelson dos Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
author_role |
author |
author2 |
Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do Pará (UFPA) Universidade de Brasília (UnB) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Santos, Gelson dos Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
dc.subject.por.fl_str_mv |
1-Laplacian operator Quasilinear elliptic operator |
topic |
1-Laplacian operator Quasilinear elliptic operator |
description |
In this paper, we use minimax methods, comparison arguments, and an approximation result to show the existence and multiplicity of solutions for the following class of problems: {-Δ1v=λf(v)inΩ,v≥0inΩ,v=0on∂Ω,where Ω is a bounded smooth domain of RN, N≥ 1 , λ> 0 is a parameter and the non-linearity f: R→ R is a continuous function that can change sign and satisfies an area condition. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-29T08:39:48Z 2022-04-29T08:39:48Z 2022-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12220-022-00881-8 Journal of Geometric Analysis, v. 32, n. 4, 2022. 1050-6926 http://hdl.handle.net/11449/230405 10.1007/s12220-022-00881-8 2-s2.0-85124753857 |
url |
http://dx.doi.org/10.1007/s12220-022-00881-8 http://hdl.handle.net/11449/230405 |
identifier_str_mv |
Journal of Geometric Analysis, v. 32, n. 4, 2022. 1050-6926 10.1007/s12220-022-00881-8 2-s2.0-85124753857 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Geometric Analysis |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128749438238720 |