Solution to the Bessel differential equation with interactive fuzzy boundary conditions

Detalhes bibliográficos
Autor(a) principal: Sánchez, Daniel Eduardo
Data de Publicação: 2022
Outros Autores: Wasques, Vinícius Francisco [UNESP], Esmi, Estevão, de Barros, Laécio Carvalho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40314-021-01695-0
http://hdl.handle.net/11449/222936
Resumo: In this paper we deal with the fuzzy boundary value problem of the Bessel differential equation, whose boundary conditions are uncertain and given by linearly interactive fuzzy numbers. The Bessel differential equation can be considered in order to model wave and heat propagation problems. The fuzzy solution is obtained from the sup-J extension principle. We show that the sup-J extension provides proper fuzzy solution for the Bessel differential equation. In addition, we study the advantages of the proposed approach with others well known methods, such as the solutions based on the Zadeh extension principle and the solutions derived from the generalized Hukuhara derivative.
id UNSP_0656753628ef794dec780190c44ce524
oai_identifier_str oai:repositorio.unesp.br:11449/222936
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Solution to the Bessel differential equation with interactive fuzzy boundary conditionsBessel differential equationFuzzy boundary value problemgH-differentiabilityLinearly interactive fuzzy numbersSup-J extension principleZadeh extension principleIn this paper we deal with the fuzzy boundary value problem of the Bessel differential equation, whose boundary conditions are uncertain and given by linearly interactive fuzzy numbers. The Bessel differential equation can be considered in order to model wave and heat propagation problems. The fuzzy solution is obtained from the sup-J extension principle. We show that the sup-J extension provides proper fuzzy solution for the Bessel differential equation. In addition, we study the advantages of the proposed approach with others well known methods, such as the solutions based on the Zadeh extension principle and the solutions derived from the generalized Hukuhara derivative.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Center of Basic Science Teaching for Engineering University Austral of ChileDepartment of Mathematics São Paulo State UniversityDepartment of Applied Mathematics University of CampinasIlum School of Science Brazilian Center for Research in Energy and MaterialsDepartment of Mathematics São Paulo State UniversityFAPESP: 2018/10946-2CNPq: 306546/2017-5University Austral of ChileUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Brazilian Center for Research in Energy and MaterialsSánchez, Daniel EduardoWasques, Vinícius Francisco [UNESP]Esmi, Estevãode Barros, Laécio Carvalho2022-04-28T19:47:40Z2022-04-28T19:47:40Z2022-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40314-021-01695-0Computational and Applied Mathematics, v. 41, n. 1, 2022.1807-03022238-3603http://hdl.handle.net/11449/22293610.1007/s40314-021-01695-02-s2.0-85120044396Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematics231815info:eu-repo/semantics/openAccess2023-01-11T19:22:21Zoai:repositorio.unesp.br:11449/222936Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:55:08.997195Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Solution to the Bessel differential equation with interactive fuzzy boundary conditions
title Solution to the Bessel differential equation with interactive fuzzy boundary conditions
spellingShingle Solution to the Bessel differential equation with interactive fuzzy boundary conditions
Sánchez, Daniel Eduardo
Bessel differential equation
Fuzzy boundary value problem
gH-differentiability
Linearly interactive fuzzy numbers
Sup-J extension principle
Zadeh extension principle
title_short Solution to the Bessel differential equation with interactive fuzzy boundary conditions
title_full Solution to the Bessel differential equation with interactive fuzzy boundary conditions
title_fullStr Solution to the Bessel differential equation with interactive fuzzy boundary conditions
title_full_unstemmed Solution to the Bessel differential equation with interactive fuzzy boundary conditions
title_sort Solution to the Bessel differential equation with interactive fuzzy boundary conditions
author Sánchez, Daniel Eduardo
author_facet Sánchez, Daniel Eduardo
Wasques, Vinícius Francisco [UNESP]
Esmi, Estevão
de Barros, Laécio Carvalho
author_role author
author2 Wasques, Vinícius Francisco [UNESP]
Esmi, Estevão
de Barros, Laécio Carvalho
author2_role author
author
author
dc.contributor.none.fl_str_mv University Austral of Chile
Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
Brazilian Center for Research in Energy and Materials
dc.contributor.author.fl_str_mv Sánchez, Daniel Eduardo
Wasques, Vinícius Francisco [UNESP]
Esmi, Estevão
de Barros, Laécio Carvalho
dc.subject.por.fl_str_mv Bessel differential equation
Fuzzy boundary value problem
gH-differentiability
Linearly interactive fuzzy numbers
Sup-J extension principle
Zadeh extension principle
topic Bessel differential equation
Fuzzy boundary value problem
gH-differentiability
Linearly interactive fuzzy numbers
Sup-J extension principle
Zadeh extension principle
description In this paper we deal with the fuzzy boundary value problem of the Bessel differential equation, whose boundary conditions are uncertain and given by linearly interactive fuzzy numbers. The Bessel differential equation can be considered in order to model wave and heat propagation problems. The fuzzy solution is obtained from the sup-J extension principle. We show that the sup-J extension provides proper fuzzy solution for the Bessel differential equation. In addition, we study the advantages of the proposed approach with others well known methods, such as the solutions based on the Zadeh extension principle and the solutions derived from the generalized Hukuhara derivative.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:47:40Z
2022-04-28T19:47:40Z
2022-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40314-021-01695-0
Computational and Applied Mathematics, v. 41, n. 1, 2022.
1807-0302
2238-3603
http://hdl.handle.net/11449/222936
10.1007/s40314-021-01695-0
2-s2.0-85120044396
url http://dx.doi.org/10.1007/s40314-021-01695-0
http://hdl.handle.net/11449/222936
identifier_str_mv Computational and Applied Mathematics, v. 41, n. 1, 2022.
1807-0302
2238-3603
10.1007/s40314-021-01695-0
2-s2.0-85120044396
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational and Applied Mathematics
231815
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128874924474368