On interactive fuzzy solutions for mechanical vibration problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.apm.2021.03.002 http://hdl.handle.net/11449/210390 |
Resumo: | Fuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved. |
id |
UNSP_b212b4b5b19beb15233222e0b070f684 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210390 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On interactive fuzzy solutions for mechanical vibration problemsFuzzy initial value problemsInteractive fuzzy numbersSup-J extension principleMechanical vibrationFuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Austral Chile, Ctr Basic Sci Teaching Engn, Valdivia, ChileSao Paulo State Univ, Dept Math, Rio Claro, BrazilUniv Austral Chile, Inst Acoust, Valdivia, ChileUniv Estadual Campinas, Dept Appl Math, Campinas, BrazilNatl Ctr Res Energy & Mat, Dept Integrated Sci Teaching Ctr, Campinas, BrazilSao Paulo State Univ, Dept Math, Rio Claro, BrazilCNPq: 142414/20174CNPq: 306546/20175FAPESP: 2016/260407CAPES: 001Elsevier B.V.Univ Austral ChileUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Natl Ctr Res Energy & MatEduardo Sanchez, DanielWasques, Vinicius F. [UNESP]Arenas, Jorge P.Esmi, EstevaoBarros, Laecio Carvalho de2021-06-25T15:07:00Z2021-06-25T15:07:00Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article304-314http://dx.doi.org/10.1016/j.apm.2021.03.002Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021.0307-904Xhttp://hdl.handle.net/11449/21039010.1016/j.apm.2021.03.002WOS:000656885200006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematical Modellinginfo:eu-repo/semantics/openAccess2021-10-23T20:17:28Zoai:repositorio.unesp.br:11449/210390Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:35:01.710330Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On interactive fuzzy solutions for mechanical vibration problems |
title |
On interactive fuzzy solutions for mechanical vibration problems |
spellingShingle |
On interactive fuzzy solutions for mechanical vibration problems Eduardo Sanchez, Daniel Fuzzy initial value problems Interactive fuzzy numbers Sup-J extension principle Mechanical vibration |
title_short |
On interactive fuzzy solutions for mechanical vibration problems |
title_full |
On interactive fuzzy solutions for mechanical vibration problems |
title_fullStr |
On interactive fuzzy solutions for mechanical vibration problems |
title_full_unstemmed |
On interactive fuzzy solutions for mechanical vibration problems |
title_sort |
On interactive fuzzy solutions for mechanical vibration problems |
author |
Eduardo Sanchez, Daniel |
author_facet |
Eduardo Sanchez, Daniel Wasques, Vinicius F. [UNESP] Arenas, Jorge P. Esmi, Estevao Barros, Laecio Carvalho de |
author_role |
author |
author2 |
Wasques, Vinicius F. [UNESP] Arenas, Jorge P. Esmi, Estevao Barros, Laecio Carvalho de |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Univ Austral Chile Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) Natl Ctr Res Energy & Mat |
dc.contributor.author.fl_str_mv |
Eduardo Sanchez, Daniel Wasques, Vinicius F. [UNESP] Arenas, Jorge P. Esmi, Estevao Barros, Laecio Carvalho de |
dc.subject.por.fl_str_mv |
Fuzzy initial value problems Interactive fuzzy numbers Sup-J extension principle Mechanical vibration |
topic |
Fuzzy initial value problems Interactive fuzzy numbers Sup-J extension principle Mechanical vibration |
description |
Fuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T15:07:00Z 2021-06-25T15:07:00Z 2021-08-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.apm.2021.03.002 Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021. 0307-904X http://hdl.handle.net/11449/210390 10.1016/j.apm.2021.03.002 WOS:000656885200006 |
url |
http://dx.doi.org/10.1016/j.apm.2021.03.002 http://hdl.handle.net/11449/210390 |
identifier_str_mv |
Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021. 0307-904X 10.1016/j.apm.2021.03.002 WOS:000656885200006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematical Modelling |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
304-314 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129089189445632 |