On interactive fuzzy solutions for mechanical vibration problems

Detalhes bibliográficos
Autor(a) principal: Eduardo Sanchez, Daniel
Data de Publicação: 2021
Outros Autores: Wasques, Vinicius F. [UNESP], Arenas, Jorge P., Esmi, Estevao, Barros, Laecio Carvalho de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.apm.2021.03.002
http://hdl.handle.net/11449/210390
Resumo: Fuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved.
id UNSP_b212b4b5b19beb15233222e0b070f684
oai_identifier_str oai:repositorio.unesp.br:11449/210390
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On interactive fuzzy solutions for mechanical vibration problemsFuzzy initial value problemsInteractive fuzzy numbersSup-J extension principleMechanical vibrationFuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Austral Chile, Ctr Basic Sci Teaching Engn, Valdivia, ChileSao Paulo State Univ, Dept Math, Rio Claro, BrazilUniv Austral Chile, Inst Acoust, Valdivia, ChileUniv Estadual Campinas, Dept Appl Math, Campinas, BrazilNatl Ctr Res Energy & Mat, Dept Integrated Sci Teaching Ctr, Campinas, BrazilSao Paulo State Univ, Dept Math, Rio Claro, BrazilCNPq: 142414/20174CNPq: 306546/20175FAPESP: 2016/260407CAPES: 001Elsevier B.V.Univ Austral ChileUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Natl Ctr Res Energy & MatEduardo Sanchez, DanielWasques, Vinicius F. [UNESP]Arenas, Jorge P.Esmi, EstevaoBarros, Laecio Carvalho de2021-06-25T15:07:00Z2021-06-25T15:07:00Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article304-314http://dx.doi.org/10.1016/j.apm.2021.03.002Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021.0307-904Xhttp://hdl.handle.net/11449/21039010.1016/j.apm.2021.03.002WOS:000656885200006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematical Modellinginfo:eu-repo/semantics/openAccess2021-10-23T20:17:28Zoai:repositorio.unesp.br:11449/210390Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:35:01.710330Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On interactive fuzzy solutions for mechanical vibration problems
title On interactive fuzzy solutions for mechanical vibration problems
spellingShingle On interactive fuzzy solutions for mechanical vibration problems
Eduardo Sanchez, Daniel
Fuzzy initial value problems
Interactive fuzzy numbers
Sup-J extension principle
Mechanical vibration
title_short On interactive fuzzy solutions for mechanical vibration problems
title_full On interactive fuzzy solutions for mechanical vibration problems
title_fullStr On interactive fuzzy solutions for mechanical vibration problems
title_full_unstemmed On interactive fuzzy solutions for mechanical vibration problems
title_sort On interactive fuzzy solutions for mechanical vibration problems
author Eduardo Sanchez, Daniel
author_facet Eduardo Sanchez, Daniel
Wasques, Vinicius F. [UNESP]
Arenas, Jorge P.
Esmi, Estevao
Barros, Laecio Carvalho de
author_role author
author2 Wasques, Vinicius F. [UNESP]
Arenas, Jorge P.
Esmi, Estevao
Barros, Laecio Carvalho de
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Univ Austral Chile
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Natl Ctr Res Energy & Mat
dc.contributor.author.fl_str_mv Eduardo Sanchez, Daniel
Wasques, Vinicius F. [UNESP]
Arenas, Jorge P.
Esmi, Estevao
Barros, Laecio Carvalho de
dc.subject.por.fl_str_mv Fuzzy initial value problems
Interactive fuzzy numbers
Sup-J extension principle
Mechanical vibration
topic Fuzzy initial value problems
Interactive fuzzy numbers
Sup-J extension principle
Mechanical vibration
description Fuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T15:07:00Z
2021-06-25T15:07:00Z
2021-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.apm.2021.03.002
Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021.
0307-904X
http://hdl.handle.net/11449/210390
10.1016/j.apm.2021.03.002
WOS:000656885200006
url http://dx.doi.org/10.1016/j.apm.2021.03.002
http://hdl.handle.net/11449/210390
identifier_str_mv Applied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021.
0307-904X
10.1016/j.apm.2021.03.002
WOS:000656885200006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematical Modelling
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 304-314
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129089189445632