Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy

Detalhes bibliográficos
Autor(a) principal: Antunes, Juliana Fonseca
Data de Publicação: 2013
Outros Autores: De Souza Araujo, Nelcileno Virgilio, Minussi, Carlos Roberto [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PTC.2013.6652373
http://hdl.handle.net/11449/227394
Resumo: This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE.
id UNSP_097c978cb0754cb66ae85b331e56a6d4
oai_identifier_str oai:repositorio.unesp.br:11449/227394
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategyAdaptive Resonance TheoryArtificial Neural NetworkMultinodal Load ForecastingParticle Swarm OptimizationThis work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE.Departamento de Informática Instituto de Educação Ciência e Tecnologia de Mato Grosso, CuiabáInstituto de Computação Universidade Federal de Mato Grosso UFMT, CuiabáDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha SolteiraDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha SolteiraCiência e Tecnologia de Mato GrossoUFMTUniversidade Estadual Paulista (UNESP)Antunes, Juliana FonsecaDe Souza Araujo, Nelcileno VirgilioMinussi, Carlos Roberto [UNESP]2022-04-29T07:12:57Z2022-04-29T07:12:57Z2013-12-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PTC.2013.66523732013 IEEE Grenoble Conference PowerTech, POWERTECH 2013.http://hdl.handle.net/11449/22739410.1109/PTC.2013.66523732-s2.0-84890861608Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013info:eu-repo/semantics/openAccess2024-07-04T19:11:28Zoai:repositorio.unesp.br:11449/227394Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:59.459084Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
title Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
spellingShingle Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
Antunes, Juliana Fonseca
Adaptive Resonance Theory
Artificial Neural Network
Multinodal Load Forecasting
Particle Swarm Optimization
title_short Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
title_full Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
title_fullStr Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
title_full_unstemmed Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
title_sort Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
author Antunes, Juliana Fonseca
author_facet Antunes, Juliana Fonseca
De Souza Araujo, Nelcileno Virgilio
Minussi, Carlos Roberto [UNESP]
author_role author
author2 De Souza Araujo, Nelcileno Virgilio
Minussi, Carlos Roberto [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Ciência e Tecnologia de Mato Grosso
UFMT
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Antunes, Juliana Fonseca
De Souza Araujo, Nelcileno Virgilio
Minussi, Carlos Roberto [UNESP]
dc.subject.por.fl_str_mv Adaptive Resonance Theory
Artificial Neural Network
Multinodal Load Forecasting
Particle Swarm Optimization
topic Adaptive Resonance Theory
Artificial Neural Network
Multinodal Load Forecasting
Particle Swarm Optimization
description This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-27
2022-04-29T07:12:57Z
2022-04-29T07:12:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PTC.2013.6652373
2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013.
http://hdl.handle.net/11449/227394
10.1109/PTC.2013.6652373
2-s2.0-84890861608
url http://dx.doi.org/10.1109/PTC.2013.6652373
http://hdl.handle.net/11449/227394
identifier_str_mv 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013.
10.1109/PTC.2013.6652373
2-s2.0-84890861608
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128668257484800