Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PTC.2013.6652373 http://hdl.handle.net/11449/227394 |
Resumo: | This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE. |
id |
UNSP_097c978cb0754cb66ae85b331e56a6d4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/227394 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategyAdaptive Resonance TheoryArtificial Neural NetworkMultinodal Load ForecastingParticle Swarm OptimizationThis work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE.Departamento de Informática Instituto de Educação Ciência e Tecnologia de Mato Grosso, CuiabáInstituto de Computação Universidade Federal de Mato Grosso UFMT, CuiabáDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha SolteiraDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha SolteiraCiência e Tecnologia de Mato GrossoUFMTUniversidade Estadual Paulista (UNESP)Antunes, Juliana FonsecaDe Souza Araujo, Nelcileno VirgilioMinussi, Carlos Roberto [UNESP]2022-04-29T07:12:57Z2022-04-29T07:12:57Z2013-12-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PTC.2013.66523732013 IEEE Grenoble Conference PowerTech, POWERTECH 2013.http://hdl.handle.net/11449/22739410.1109/PTC.2013.66523732-s2.0-84890861608Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013info:eu-repo/semantics/openAccess2024-07-04T19:11:28Zoai:repositorio.unesp.br:11449/227394Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:59.459084Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
title |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
spellingShingle |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy Antunes, Juliana Fonseca Adaptive Resonance Theory Artificial Neural Network Multinodal Load Forecasting Particle Swarm Optimization |
title_short |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
title_full |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
title_fullStr |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
title_full_unstemmed |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
title_sort |
Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy |
author |
Antunes, Juliana Fonseca |
author_facet |
Antunes, Juliana Fonseca De Souza Araujo, Nelcileno Virgilio Minussi, Carlos Roberto [UNESP] |
author_role |
author |
author2 |
De Souza Araujo, Nelcileno Virgilio Minussi, Carlos Roberto [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Ciência e Tecnologia de Mato Grosso UFMT Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Antunes, Juliana Fonseca De Souza Araujo, Nelcileno Virgilio Minussi, Carlos Roberto [UNESP] |
dc.subject.por.fl_str_mv |
Adaptive Resonance Theory Artificial Neural Network Multinodal Load Forecasting Particle Swarm Optimization |
topic |
Adaptive Resonance Theory Artificial Neural Network Multinodal Load Forecasting Particle Swarm Optimization |
description |
This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-27 2022-04-29T07:12:57Z 2022-04-29T07:12:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PTC.2013.6652373 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013. http://hdl.handle.net/11449/227394 10.1109/PTC.2013.6652373 2-s2.0-84890861608 |
url |
http://dx.doi.org/10.1109/PTC.2013.6652373 http://hdl.handle.net/11449/227394 |
identifier_str_mv |
2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013. 10.1109/PTC.2013.6652373 2-s2.0-84890861608 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128668257484800 |