Using Aggregated Electrical Loads for the Multinodal Load Forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s40313-022-00906-1 http://hdl.handle.net/11449/223594 |
Resumo: | Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations. |
id |
UNSP_c3190f07255c7beb4785061d8270ab8b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223594 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using Aggregated Electrical Loads for the Multinodal Load ForecastingAdaptive resonance theoryAggregate electric loadsArtificial neural networkElectrical system distributionMultinodal load forecastingForecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.UNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56UNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56Universidade Estadual Paulista (UNESP)Moreira-Júnior, Joaquim R. [UNESP]Abreu, Thays [UNESP]Minussi, Carlos R. [UNESP]Lopes, Mara L. M. [UNESP]2022-04-28T19:51:33Z2022-04-28T19:51:33Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40313-022-00906-1Journal of Control, Automation and Electrical Systems.2195-38992195-3880http://hdl.handle.net/11449/22359410.1007/s40313-022-00906-12-s2.0-85126018241Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Control, Automation and Electrical Systemsinfo:eu-repo/semantics/openAccess2022-04-28T19:51:33Zoai:repositorio.unesp.br:11449/223594Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:59:38.665948Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
title |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
spellingShingle |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting Moreira-Júnior, Joaquim R. [UNESP] Adaptive resonance theory Aggregate electric loads Artificial neural network Electrical system distribution Multinodal load forecasting |
title_short |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
title_full |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
title_fullStr |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
title_full_unstemmed |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
title_sort |
Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
author |
Moreira-Júnior, Joaquim R. [UNESP] |
author_facet |
Moreira-Júnior, Joaquim R. [UNESP] Abreu, Thays [UNESP] Minussi, Carlos R. [UNESP] Lopes, Mara L. M. [UNESP] |
author_role |
author |
author2 |
Abreu, Thays [UNESP] Minussi, Carlos R. [UNESP] Lopes, Mara L. M. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Moreira-Júnior, Joaquim R. [UNESP] Abreu, Thays [UNESP] Minussi, Carlos R. [UNESP] Lopes, Mara L. M. [UNESP] |
dc.subject.por.fl_str_mv |
Adaptive resonance theory Aggregate electric loads Artificial neural network Electrical system distribution Multinodal load forecasting |
topic |
Adaptive resonance theory Aggregate electric loads Artificial neural network Electrical system distribution Multinodal load forecasting |
description |
Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-28T19:51:33Z 2022-04-28T19:51:33Z 2022-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40313-022-00906-1 Journal of Control, Automation and Electrical Systems. 2195-3899 2195-3880 http://hdl.handle.net/11449/223594 10.1007/s40313-022-00906-1 2-s2.0-85126018241 |
url |
http://dx.doi.org/10.1007/s40313-022-00906-1 http://hdl.handle.net/11449/223594 |
identifier_str_mv |
Journal of Control, Automation and Electrical Systems. 2195-3899 2195-3880 10.1007/s40313-022-00906-1 2-s2.0-85126018241 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Control, Automation and Electrical Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129009127522304 |