Using Aggregated Electrical Loads for the Multinodal Load Forecasting

Detalhes bibliográficos
Autor(a) principal: Moreira-Júnior, Joaquim R. [UNESP]
Data de Publicação: 2022
Outros Autores: Abreu, Thays [UNESP], Minussi, Carlos R. [UNESP], Lopes, Mara L. M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40313-022-00906-1
http://hdl.handle.net/11449/223594
Resumo: Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.
id UNSP_c3190f07255c7beb4785061d8270ab8b
oai_identifier_str oai:repositorio.unesp.br:11449/223594
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using Aggregated Electrical Loads for the Multinodal Load ForecastingAdaptive resonance theoryAggregate electric loadsArtificial neural networkElectrical system distributionMultinodal load forecastingForecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.UNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56UNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56Universidade Estadual Paulista (UNESP)Moreira-Júnior, Joaquim R. [UNESP]Abreu, Thays [UNESP]Minussi, Carlos R. [UNESP]Lopes, Mara L. M. [UNESP]2022-04-28T19:51:33Z2022-04-28T19:51:33Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40313-022-00906-1Journal of Control, Automation and Electrical Systems.2195-38992195-3880http://hdl.handle.net/11449/22359410.1007/s40313-022-00906-12-s2.0-85126018241Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Control, Automation and Electrical Systemsinfo:eu-repo/semantics/openAccess2022-04-28T19:51:33Zoai:repositorio.unesp.br:11449/223594Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:59:38.665948Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using Aggregated Electrical Loads for the Multinodal Load Forecasting
title Using Aggregated Electrical Loads for the Multinodal Load Forecasting
spellingShingle Using Aggregated Electrical Loads for the Multinodal Load Forecasting
Moreira-Júnior, Joaquim R. [UNESP]
Adaptive resonance theory
Aggregate electric loads
Artificial neural network
Electrical system distribution
Multinodal load forecasting
title_short Using Aggregated Electrical Loads for the Multinodal Load Forecasting
title_full Using Aggregated Electrical Loads for the Multinodal Load Forecasting
title_fullStr Using Aggregated Electrical Loads for the Multinodal Load Forecasting
title_full_unstemmed Using Aggregated Electrical Loads for the Multinodal Load Forecasting
title_sort Using Aggregated Electrical Loads for the Multinodal Load Forecasting
author Moreira-Júnior, Joaquim R. [UNESP]
author_facet Moreira-Júnior, Joaquim R. [UNESP]
Abreu, Thays [UNESP]
Minussi, Carlos R. [UNESP]
Lopes, Mara L. M. [UNESP]
author_role author
author2 Abreu, Thays [UNESP]
Minussi, Carlos R. [UNESP]
Lopes, Mara L. M. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Moreira-Júnior, Joaquim R. [UNESP]
Abreu, Thays [UNESP]
Minussi, Carlos R. [UNESP]
Lopes, Mara L. M. [UNESP]
dc.subject.por.fl_str_mv Adaptive resonance theory
Aggregate electric loads
Artificial neural network
Electrical system distribution
Multinodal load forecasting
topic Adaptive resonance theory
Aggregate electric loads
Artificial neural network
Electrical system distribution
Multinodal load forecasting
description Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:51:33Z
2022-04-28T19:51:33Z
2022-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40313-022-00906-1
Journal of Control, Automation and Electrical Systems.
2195-3899
2195-3880
http://hdl.handle.net/11449/223594
10.1007/s40313-022-00906-1
2-s2.0-85126018241
url http://dx.doi.org/10.1007/s40313-022-00906-1
http://hdl.handle.net/11449/223594
identifier_str_mv Journal of Control, Automation and Electrical Systems.
2195-3899
2195-3880
10.1007/s40313-022-00906-1
2-s2.0-85126018241
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Control, Automation and Electrical Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129009127522304