Fourier series for quaternions and the square of the error theorem

Detalhes bibliográficos
Autor(a) principal: Martinez, Cristiane Aparecida Pendeza
Data de Publicação: 2012
Outros Autores: Borges Neto, Manoel Ferreira [UNESP], Martinez, André L.M., Castelani, Emerson V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.diogenes.bg/ijam/contents/index.html
http://hdl.handle.net/11449/122815
Resumo: In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.
id UNSP_09c28fe98630aeb345803d78e27f625e
oai_identifier_str oai:repositorio.unesp.br:11449/122815
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fourier series for quaternions and the square of the error theoremIn this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, BrasilCOMAT, Federal Technological University of Paraná CEP: 86300-000, Corn´elio Proc´opio, PR, BRASILUniversidade Estadual Paulista (Unesp)Martinez, Cristiane Aparecida PendezaBorges Neto, Manoel Ferreira [UNESP]Martinez, André L.M.Castelani, Emerson V.2015-04-27T11:56:03Z2015-04-27T11:56:03Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article557-568http://www.diogenes.bg/ijam/contents/index.htmlInternational Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012.1311-1728http://hdl.handle.net/11449/1228157955413331293674Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied Mathematicsinfo:eu-repo/semantics/openAccess2021-10-22T21:09:38Zoai:repositorio.unesp.br:11449/122815Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:01:40.313243Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fourier series for quaternions and the square of the error theorem
title Fourier series for quaternions and the square of the error theorem
spellingShingle Fourier series for quaternions and the square of the error theorem
Martinez, Cristiane Aparecida Pendeza
title_short Fourier series for quaternions and the square of the error theorem
title_full Fourier series for quaternions and the square of the error theorem
title_fullStr Fourier series for quaternions and the square of the error theorem
title_full_unstemmed Fourier series for quaternions and the square of the error theorem
title_sort Fourier series for quaternions and the square of the error theorem
author Martinez, Cristiane Aparecida Pendeza
author_facet Martinez, Cristiane Aparecida Pendeza
Borges Neto, Manoel Ferreira [UNESP]
Martinez, André L.M.
Castelani, Emerson V.
author_role author
author2 Borges Neto, Manoel Ferreira [UNESP]
Martinez, André L.M.
Castelani, Emerson V.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Martinez, Cristiane Aparecida Pendeza
Borges Neto, Manoel Ferreira [UNESP]
Martinez, André L.M.
Castelani, Emerson V.
description In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.
publishDate 2012
dc.date.none.fl_str_mv 2012
2015-04-27T11:56:03Z
2015-04-27T11:56:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.diogenes.bg/ijam/contents/index.html
International Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012.
1311-1728
http://hdl.handle.net/11449/122815
7955413331293674
url http://www.diogenes.bg/ijam/contents/index.html
http://hdl.handle.net/11449/122815
identifier_str_mv International Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012.
1311-1728
7955413331293674
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 557-568
dc.source.none.fl_str_mv Currículo Lattes
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128307050315776