Fourier series for quaternions and the square of the error theorem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.diogenes.bg/ijam/contents/index.html http://hdl.handle.net/11449/122815 |
Resumo: | In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation. |
id |
UNSP_09c28fe98630aeb345803d78e27f625e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/122815 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fourier series for quaternions and the square of the error theoremIn this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, BrasilCOMAT, Federal Technological University of Paraná CEP: 86300-000, Corn´elio Proc´opio, PR, BRASILUniversidade Estadual Paulista (Unesp)Martinez, Cristiane Aparecida PendezaBorges Neto, Manoel Ferreira [UNESP]Martinez, André L.M.Castelani, Emerson V.2015-04-27T11:56:03Z2015-04-27T11:56:03Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article557-568http://www.diogenes.bg/ijam/contents/index.htmlInternational Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012.1311-1728http://hdl.handle.net/11449/1228157955413331293674Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied Mathematicsinfo:eu-repo/semantics/openAccess2021-10-22T21:09:38Zoai:repositorio.unesp.br:11449/122815Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:01:40.313243Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fourier series for quaternions and the square of the error theorem |
title |
Fourier series for quaternions and the square of the error theorem |
spellingShingle |
Fourier series for quaternions and the square of the error theorem Martinez, Cristiane Aparecida Pendeza |
title_short |
Fourier series for quaternions and the square of the error theorem |
title_full |
Fourier series for quaternions and the square of the error theorem |
title_fullStr |
Fourier series for quaternions and the square of the error theorem |
title_full_unstemmed |
Fourier series for quaternions and the square of the error theorem |
title_sort |
Fourier series for quaternions and the square of the error theorem |
author |
Martinez, Cristiane Aparecida Pendeza |
author_facet |
Martinez, Cristiane Aparecida Pendeza Borges Neto, Manoel Ferreira [UNESP] Martinez, André L.M. Castelani, Emerson V. |
author_role |
author |
author2 |
Borges Neto, Manoel Ferreira [UNESP] Martinez, André L.M. Castelani, Emerson V. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Martinez, Cristiane Aparecida Pendeza Borges Neto, Manoel Ferreira [UNESP] Martinez, André L.M. Castelani, Emerson V. |
description |
In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2015-04-27T11:56:03Z 2015-04-27T11:56:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.diogenes.bg/ijam/contents/index.html International Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012. 1311-1728 http://hdl.handle.net/11449/122815 7955413331293674 |
url |
http://www.diogenes.bg/ijam/contents/index.html http://hdl.handle.net/11449/122815 |
identifier_str_mv |
International Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012. 1311-1728 7955413331293674 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
557-568 |
dc.source.none.fl_str_mv |
Currículo Lattes reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128307050315776 |