RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS

Detalhes bibliográficos
Autor(a) principal: Lima, Elizeu de S.
Data de Publicação: 2022
Outros Autores: Souza, Zigomar M. de, Oliveira, Stanley R. de M., Montanari, Rafael [UNESP], Farhate, Camila V. V. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
http://hdl.handle.net/11449/218601
Resumo: Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.
id UNSP_0bce79fa258c61410f869810a5561242
oai_identifier_str oai:repositorio.unesp.br:11449/218601
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUSPhysicochemical variables of soilmachine learningsoil phosphorus contentsoil moistureexchangeable aluminumEucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.Univ Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, BrazilUniv Estadual Campinas, Fac Engn Agr, Campinas, SP, BrazilEmbrapa Agr Digital, Campinas, SP, BrazilUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, BrazilSoc Brasil Engenharia AgricolaUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Lima, Elizeu de S.Souza, Zigomar M. deOliveira, Stanley R. de M.Montanari, Rafael [UNESP]Farhate, Camila V. V. [UNESP]2022-04-28T17:21:55Z2022-04-28T17:21:55Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022.0100-6916http://hdl.handle.net/11449/21860110.1590/1809-4430-Eng.Agric.v42nepe20210153/2022WOS:000778798600001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEngenharia Agricolainfo:eu-repo/semantics/openAccess2022-04-28T17:21:55Zoai:repositorio.unesp.br:11449/218601Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462022-04-28T17:21:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
spellingShingle RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
Lima, Elizeu de S.
Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
title_short RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_full RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_fullStr RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_full_unstemmed RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_sort RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
author Lima, Elizeu de S.
author_facet Lima, Elizeu de S.
Souza, Zigomar M. de
Oliveira, Stanley R. de M.
Montanari, Rafael [UNESP]
Farhate, Camila V. V. [UNESP]
author_role author
author2 Souza, Zigomar M. de
Oliveira, Stanley R. de M.
Montanari, Rafael [UNESP]
Farhate, Camila V. V. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.author.fl_str_mv Lima, Elizeu de S.
Souza, Zigomar M. de
Oliveira, Stanley R. de M.
Montanari, Rafael [UNESP]
Farhate, Camila V. V. [UNESP]
dc.subject.por.fl_str_mv Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
topic Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
description Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T17:21:55Z
2022-04-28T17:21:55Z
2022-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022.
0100-6916
http://hdl.handle.net/11449/218601
10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
WOS:000778798600001
url http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
http://hdl.handle.net/11449/218601
identifier_str_mv Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022.
0100-6916
10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
WOS:000778798600001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Engenharia Agricola
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11
dc.publisher.none.fl_str_mv Soc Brasil Engenharia Agricola
publisher.none.fl_str_mv Soc Brasil Engenharia Agricola
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826303942310494208