RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 http://hdl.handle.net/11449/218601 |
Resumo: | Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil. |
id |
UNSP_0bce79fa258c61410f869810a5561242 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/218601 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUSPhysicochemical variables of soilmachine learningsoil phosphorus contentsoil moistureexchangeable aluminumEucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.Univ Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, BrazilUniv Estadual Campinas, Fac Engn Agr, Campinas, SP, BrazilEmbrapa Agr Digital, Campinas, SP, BrazilUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, BrazilSoc Brasil Engenharia AgricolaUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Lima, Elizeu de S.Souza, Zigomar M. deOliveira, Stanley R. de M.Montanari, Rafael [UNESP]Farhate, Camila V. V. [UNESP]2022-04-28T17:21:55Z2022-04-28T17:21:55Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022.0100-6916http://hdl.handle.net/11449/21860110.1590/1809-4430-Eng.Agric.v42nepe20210153/2022WOS:000778798600001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEngenharia Agricolainfo:eu-repo/semantics/openAccess2022-04-28T17:21:55Zoai:repositorio.unesp.br:11449/218601Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462022-04-28T17:21:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
spellingShingle |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS Lima, Elizeu de S. Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
title_short |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_full |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_fullStr |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_full_unstemmed |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_sort |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
author |
Lima, Elizeu de S. |
author_facet |
Lima, Elizeu de S. Souza, Zigomar M. de Oliveira, Stanley R. de M. Montanari, Rafael [UNESP] Farhate, Camila V. V. [UNESP] |
author_role |
author |
author2 |
Souza, Zigomar M. de Oliveira, Stanley R. de M. Montanari, Rafael [UNESP] Farhate, Camila V. V. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) |
dc.contributor.author.fl_str_mv |
Lima, Elizeu de S. Souza, Zigomar M. de Oliveira, Stanley R. de M. Montanari, Rafael [UNESP] Farhate, Camila V. V. [UNESP] |
dc.subject.por.fl_str_mv |
Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
topic |
Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
description |
Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-28T17:21:55Z 2022-04-28T17:21:55Z 2022-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022. 0100-6916 http://hdl.handle.net/11449/218601 10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 WOS:000778798600001 |
url |
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 http://hdl.handle.net/11449/218601 |
identifier_str_mv |
Engenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022. 0100-6916 10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 WOS:000778798600001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Engenharia Agricola |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 |
dc.publisher.none.fl_str_mv |
Soc Brasil Engenharia Agricola |
publisher.none.fl_str_mv |
Soc Brasil Engenharia Agricola |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826303942310494208 |