Machine learning modeling in temporal variability of soil respiration in planted forest areas

Detalhes bibliográficos
Autor(a) principal: Vicentini, Maria Elisa [UNESP]
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/215295
Resumo: Understanding the temporal dynamics of land respiration in tropical ecosystems is challenging, especially when it is associated with Land Use, Land-Use Change and Forestry (LULUCF). Many studies have modeled the dynamics of CO2 emission from soil (FCO2), but few studies have modeled the temporal dynamics of soil O2 influx (FO2). Therefore, the objective of this study was to evaluate the predictive performance of artificial neural networks (ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) machine learning (ML) techniques in modeling the temporal variability of FCO2 and FO2 in forests planted in three ecosystems of planted forests: Pinus (Pinus spp), Eucalyptus (Eucalyptus spp), and native species, converted more than 30 years ago in the Cerrado biome, Brazil. We used a database composed of agro-meteorological data, improved vegetation index (EVI), and soil chemical and physical attributes as predictor variables and principal component analysis as the main data mining technique. For each monoculture and native species forest the numbers of FCO2 and FO2 recordings were (n = 500) and (n = 175), respectively. For pine forest, ANNs showed better predictive performance than SVR. The multilayer perceptron (MLPNN) with 12 input variables explained R2 = 42% of the temporal variability in FCO2. The general regression neural network (GRNN) with 10 input variables explained temporal variability in FO2 with an R2 of 56%. For eucalyptus, in the estimation of FCO2, the best predictive performance was obtained with MLP with validation (R² = 0.59; RMSE = 1.034 µmol m-2s-1). FO2 estimation: validation (R² = 0.36; RMSE = 0.076 mg m-2s-1). SVR with radial basis function kernel (SVR-RBF) was superior to the sigmoid (SVR-SIG), and polynomial kernels (SVR-PL), with the following values for FCO2; validation (R² = 0.53; RMSE = 0.990 µmol m-2s-1).In Native Species areas, the best results were: FCO2 with Radial Basis Function Neural Network (RBFNN) (R2 = 0.54, RMSE = 1.015 µmol m-2s-1) and FO2 with RBFNN (R2 = 0.74, 0.079 mg m-2s-1). Estimates of FCO2 showed better predictive performance than FO2. RBFNN was best estimate for FCO2. MLPNN is the best architecture for FO2 (R2 = 0.45, RMSE = 0.94 mg m-2s-1). In relation to ANFIS, FO2, did not show good generalizability and presented the worst performance, showing the highest mean absolute percentage error and lowest accuracy (R2 = 0.12, MAPE 51.27% and R2 = 0.28, MAPE 47.48%) calibration and validation respectively). Analyzing the performance of the two estimates, SVR-RBF for FCO2 performed better than SVR-RBF for FO2. The RF for FCO2 in the calibration and validation phases presented values of the (R2 = 0.80 and R2 = 0.60 respectively). The type of forest influenced temporal variability in soil respiration. We found that soil temperature (Ts) EVI, global solar radiation (GSR), macroporosity (macro), and organic matter (SOM) were the variables that most influenced the two estimates.
id UNSP_0c67445a8d86093a3653a5c2ef20a310
oai_identifier_str oai:repositorio.unesp.br:11449/215295
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Machine learning modeling in temporal variability of soil respiration in planted forest areasAprendizado de máquina na modelagem da variabilidade temporal da respiração do solo em áreas de floresta plantadaCarbon dynamicsSoil-atmosphereLand useGreenhouse gasesMathematical modelsDinâmica do carbonoAtmosfera do soloUso do soloGases do efeito estufaModelos matemáticosUnderstanding the temporal dynamics of land respiration in tropical ecosystems is challenging, especially when it is associated with Land Use, Land-Use Change and Forestry (LULUCF). Many studies have modeled the dynamics of CO2 emission from soil (FCO2), but few studies have modeled the temporal dynamics of soil O2 influx (FO2). Therefore, the objective of this study was to evaluate the predictive performance of artificial neural networks (ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) machine learning (ML) techniques in modeling the temporal variability of FCO2 and FO2 in forests planted in three ecosystems of planted forests: Pinus (Pinus spp), Eucalyptus (Eucalyptus spp), and native species, converted more than 30 years ago in the Cerrado biome, Brazil. We used a database composed of agro-meteorological data, improved vegetation index (EVI), and soil chemical and physical attributes as predictor variables and principal component analysis as the main data mining technique. For each monoculture and native species forest the numbers of FCO2 and FO2 recordings were (n = 500) and (n = 175), respectively. For pine forest, ANNs showed better predictive performance than SVR. The multilayer perceptron (MLPNN) with 12 input variables explained R2 = 42% of the temporal variability in FCO2. The general regression neural network (GRNN) with 10 input variables explained temporal variability in FO2 with an R2 of 56%. For eucalyptus, in the estimation of FCO2, the best predictive performance was obtained with MLP with validation (R² = 0.59; RMSE = 1.034 µmol m-2s-1). FO2 estimation: validation (R² = 0.36; RMSE = 0.076 mg m-2s-1). SVR with radial basis function kernel (SVR-RBF) was superior to the sigmoid (SVR-SIG), and polynomial kernels (SVR-PL), with the following values for FCO2; validation (R² = 0.53; RMSE = 0.990 µmol m-2s-1).In Native Species areas, the best results were: FCO2 with Radial Basis Function Neural Network (RBFNN) (R2 = 0.54, RMSE = 1.015 µmol m-2s-1) and FO2 with RBFNN (R2 = 0.74, 0.079 mg m-2s-1). Estimates of FCO2 showed better predictive performance than FO2. RBFNN was best estimate for FCO2. MLPNN is the best architecture for FO2 (R2 = 0.45, RMSE = 0.94 mg m-2s-1). In relation to ANFIS, FO2, did not show good generalizability and presented the worst performance, showing the highest mean absolute percentage error and lowest accuracy (R2 = 0.12, MAPE 51.27% and R2 = 0.28, MAPE 47.48%) calibration and validation respectively). Analyzing the performance of the two estimates, SVR-RBF for FCO2 performed better than SVR-RBF for FO2. The RF for FCO2 in the calibration and validation phases presented values of the (R2 = 0.80 and R2 = 0.60 respectively). The type of forest influenced temporal variability in soil respiration. We found that soil temperature (Ts) EVI, global solar radiation (GSR), macroporosity (macro), and organic matter (SOM) were the variables that most influenced the two estimates.Compreender a dinâmica temporal da respiração do solo (RS) nos ecossistemas tropicais é desafiador, principalmente quando está associada à Mudança do uso da terra e Florestas (MUTF). Os diferentes tipos de manejo podem ter impactos na mudança do fluxo CO2 (ou emissão de CO2 do solo - FCO2), e do influxo de oxigênio no solo (FO2). Muitos estudos modelaram a dinâmica temporal da FCO2, mas poucos estudos modelaram a dinâmica temporal do FO2. Portanto, o objetivo deste estudo foi avaliar o desempenho preditivo de quatro técnicas de aprendizado de máquina: redes neurais artificiais (RNA), Regressão por vetores suporte (RVS), Sistema de Inferência Adaptativo Neuro-Difuso (ANFIS) e Random Forest (RF) na modelagem da variabilidade temporal da FCO2 e FO2 em áreas de florestas plantadas convertidas há mais de 30 anos no bioma Cerrado, Brasil, com Eucalyptus (Eucalyptus spp.), Pinus (Pinus spp) e espécies nativa, O banco de dados foi composto pelas seguintes variáveis preditoras: dados agro-meteorológicos, índice de vegetação melhorado (EVI), e atributos químicos e físicos do solo. A análise de componentes principais foi utilizada como técnica de mineração dos dados. Para cada área de monocultivo e reflorestamento com espécies nativas o número de observações das variáveis respostas para FCO2 e FO2 foram (n= 500) e (n = 175) respectivamente. Na floresta de pinus, as RNas, demonstraram melhor desempenho preditivo do que as RVS. Uma rede neural Multilayer Perceptron (MLPNN), constituída com 12 variáveis de entrada explicou 42% da variabilidade temporal da FCO2. A rede neural de regressão geral (GRNN) com 10 variáveis de entrada explicou (R2 = 56%) da variabilidade temporal FO2. Para floresta de eucalipto, na estimativa da FCO2, o melhor desempenho foi obtido com MLPNN na fase de validação (R² = 0,59;) e Raiz quadrada do erro-médio (RMSE = 1,034 µmol m-2 s-1). Para FO2 os valores foram: validação (R² = 0,36; RMSE = 0,076 mg m-2 s-1). Em relação à SVR o desempenho dos modelos com o kernel de função de base radial (SVR-RBF) foi superior ao sigmóide (SVR-SIG), e kernel polinomial (SVR-PL). Os seguintes valores forma observados para FCO2; validação (R² = 0,53; RMSE = 0,990 µmol m-2 s-1). A dinâmica da FCO2 e FO2 nessa área foi associada à respiração das raízes. Na área com espécies nativas, o desempenho mais preditivo para FCO2 foi com Rede Neural de Função de Base Radial (RBFNN) (R2 = 0,54, RMSE = 1,015 µmol m-2s-1) e FO2 com RBFNN (R2 = 0,74; RMSE 0,079 mg m-2s-1). Na segunda fase do estudo, desenvolvemos um modelo global considerando a base de dados das três áreas para estimativa da FCO2 e FO2. As estimativas para FCO2 foram mais perditivas que FO2. .A RBFNN foi a melhor modelo para na FCO2 (R2 = 0,51; RMSE = 0,97 µmol m-2s-1). Em contrapartida a MLPNN foi a melhor arquitetura para o FO2 (R2 = 0,45, RMSE = 0,94 mg m-2s-1). A ANFIS não resultou em um modelo com boa capacidade de generalização para FO2 e apresentou o pior desempenho na calibração (R2 = 0,12, MAPE 51, 27%) e validação (R2 = 0,28 e MAPE 47, 48%) com elevados erros percentuais associados. De uma forma geral o modelo SVR-RBF teve melhor desempenho na FCO2, quando comparado com FO2. O modelo RF foi satisfatório para FCO2 nas fases de calibração e validação R2 0,80 e R2 0,60 respectivamente. O tipo de floresta influenciou a variabilidade temporal na respiração do solo. Verificámos que a temperatura do solo (Ts) EVI, radiação solar (RSG), macroporosidade (macro), e matéria orgânica (MOS) foram as variáveis que mais influenciaram as duas estimativas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)001Universidade Estadual Paulista (Unesp)Panosso, Alan RodrigoUniversidade Estadual Paulista (Unesp)Vicentini, Maria Elisa [UNESP]2021-12-01T12:16:38Z2021-12-01T12:16:38Z2021-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/21529533004102071P2enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-05T14:43:34Zoai:repositorio.unesp.br:11449/215295Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:39:40.104793Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Machine learning modeling in temporal variability of soil respiration in planted forest areas
Aprendizado de máquina na modelagem da variabilidade temporal da respiração do solo em áreas de floresta plantada
title Machine learning modeling in temporal variability of soil respiration in planted forest areas
spellingShingle Machine learning modeling in temporal variability of soil respiration in planted forest areas
Vicentini, Maria Elisa [UNESP]
Carbon dynamics
Soil-atmosphere
Land use
Greenhouse gases
Mathematical models
Dinâmica do carbono
Atmosfera do solo
Uso do solo
Gases do efeito estufa
Modelos matemáticos
title_short Machine learning modeling in temporal variability of soil respiration in planted forest areas
title_full Machine learning modeling in temporal variability of soil respiration in planted forest areas
title_fullStr Machine learning modeling in temporal variability of soil respiration in planted forest areas
title_full_unstemmed Machine learning modeling in temporal variability of soil respiration in planted forest areas
title_sort Machine learning modeling in temporal variability of soil respiration in planted forest areas
author Vicentini, Maria Elisa [UNESP]
author_facet Vicentini, Maria Elisa [UNESP]
author_role author
dc.contributor.none.fl_str_mv Panosso, Alan Rodrigo
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Vicentini, Maria Elisa [UNESP]
dc.subject.por.fl_str_mv Carbon dynamics
Soil-atmosphere
Land use
Greenhouse gases
Mathematical models
Dinâmica do carbono
Atmosfera do solo
Uso do solo
Gases do efeito estufa
Modelos matemáticos
topic Carbon dynamics
Soil-atmosphere
Land use
Greenhouse gases
Mathematical models
Dinâmica do carbono
Atmosfera do solo
Uso do solo
Gases do efeito estufa
Modelos matemáticos
description Understanding the temporal dynamics of land respiration in tropical ecosystems is challenging, especially when it is associated with Land Use, Land-Use Change and Forestry (LULUCF). Many studies have modeled the dynamics of CO2 emission from soil (FCO2), but few studies have modeled the temporal dynamics of soil O2 influx (FO2). Therefore, the objective of this study was to evaluate the predictive performance of artificial neural networks (ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) machine learning (ML) techniques in modeling the temporal variability of FCO2 and FO2 in forests planted in three ecosystems of planted forests: Pinus (Pinus spp), Eucalyptus (Eucalyptus spp), and native species, converted more than 30 years ago in the Cerrado biome, Brazil. We used a database composed of agro-meteorological data, improved vegetation index (EVI), and soil chemical and physical attributes as predictor variables and principal component analysis as the main data mining technique. For each monoculture and native species forest the numbers of FCO2 and FO2 recordings were (n = 500) and (n = 175), respectively. For pine forest, ANNs showed better predictive performance than SVR. The multilayer perceptron (MLPNN) with 12 input variables explained R2 = 42% of the temporal variability in FCO2. The general regression neural network (GRNN) with 10 input variables explained temporal variability in FO2 with an R2 of 56%. For eucalyptus, in the estimation of FCO2, the best predictive performance was obtained with MLP with validation (R² = 0.59; RMSE = 1.034 µmol m-2s-1). FO2 estimation: validation (R² = 0.36; RMSE = 0.076 mg m-2s-1). SVR with radial basis function kernel (SVR-RBF) was superior to the sigmoid (SVR-SIG), and polynomial kernels (SVR-PL), with the following values for FCO2; validation (R² = 0.53; RMSE = 0.990 µmol m-2s-1).In Native Species areas, the best results were: FCO2 with Radial Basis Function Neural Network (RBFNN) (R2 = 0.54, RMSE = 1.015 µmol m-2s-1) and FO2 with RBFNN (R2 = 0.74, 0.079 mg m-2s-1). Estimates of FCO2 showed better predictive performance than FO2. RBFNN was best estimate for FCO2. MLPNN is the best architecture for FO2 (R2 = 0.45, RMSE = 0.94 mg m-2s-1). In relation to ANFIS, FO2, did not show good generalizability and presented the worst performance, showing the highest mean absolute percentage error and lowest accuracy (R2 = 0.12, MAPE 51.27% and R2 = 0.28, MAPE 47.48%) calibration and validation respectively). Analyzing the performance of the two estimates, SVR-RBF for FCO2 performed better than SVR-RBF for FO2. The RF for FCO2 in the calibration and validation phases presented values of the (R2 = 0.80 and R2 = 0.60 respectively). The type of forest influenced temporal variability in soil respiration. We found that soil temperature (Ts) EVI, global solar radiation (GSR), macroporosity (macro), and organic matter (SOM) were the variables that most influenced the two estimates.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-01T12:16:38Z
2021-12-01T12:16:38Z
2021-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/215295
33004102071P2
url http://hdl.handle.net/11449/215295
identifier_str_mv 33004102071P2
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129447518273536