Synchronization structure of evolving epileptic networks using cross-entropy

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Abner Cardoso
Data de Publicação: 2018
Outros Autores: Ferreira Caboclo, Luis Otavio Sales, Cerdeira, Hilda Alicia [UNESP], Amaro, Edson, Machado, Birajara Soares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1140/epjst/e2018-800015-1
http://hdl.handle.net/11449/188231
Resumo: In this paper we present connectivity patterns of evolving large scale epileptic networks. We employed a cross-entropy measure in the frequency domain on EEG signals to infer the networks, before and during episodes of epileptic seizures. This measure allowed us to make a richer portrait about the node interactions on the graph and to identify emergent structures associated with the synchronization of brain activity. Our results points to a more complex scenario of network organization than the synchronized/unsynchronized dichotomy, with two main results: first, showing regions with unsynchronized (or independent) behavior, even during absence seizures, contradicting the concept of hypersynchrony. Furthermore, we explore the cross-entropy fluctuations along the seizure: a group of nodes became more similar over time while another group became more different, showing a complementary behaviour and different local brain activities. These results bring new questions about the spreading and the sustenance of the epileptic seizures and others synchronization phenomena in living systems.
id UNSP_0d58825f64ba326c2b3799dd36325e38
oai_identifier_str oai:repositorio.unesp.br:11449/188231
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Synchronization structure of evolving epileptic networks using cross-entropyIn this paper we present connectivity patterns of evolving large scale epileptic networks. We employed a cross-entropy measure in the frequency domain on EEG signals to infer the networks, before and during episodes of epileptic seizures. This measure allowed us to make a richer portrait about the node interactions on the graph and to identify emergent structures associated with the synchronization of brain activity. Our results points to a more complex scenario of network organization than the synchronized/unsynchronized dichotomy, with two main results: first, showing regions with unsynchronized (or independent) behavior, even during absence seizures, contradicting the concept of hypersynchrony. Furthermore, we explore the cross-entropy fluctuations along the seizure: a group of nodes became more similar over time while another group became more different, showing a complementary behaviour and different local brain activities. These results bring new questions about the spreading and the sustenance of the epileptic seizures and others synchronization phenomena in living systems.Instituto de Matemática e Estatística Universidade de São PauloHospital Israelita Albert EinsteinSão Paulo State University (UNESP) Instituto de Física TeóricaEpistemic Department of ResearchSão Paulo State University (UNESP) Instituto de Física TeóricaUniversidade de São Paulo (USP)Hospital Israelita Albert EinsteinUniversidade Estadual Paulista (Unesp)EpistemicRodrigues, Abner CardosoFerreira Caboclo, Luis Otavio SalesCerdeira, Hilda Alicia [UNESP]Amaro, EdsonMachado, Birajara Soares2019-10-06T16:01:29Z2019-10-06T16:01:29Z2018-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article883-893http://dx.doi.org/10.1140/epjst/e2018-800015-1European Physical Journal: Special Topics, v. 227, n. 7-9, p. 883-893, 2018.1951-64011951-6355http://hdl.handle.net/11449/18823110.1140/epjst/e2018-800015-12-s2.0-85055108543Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEuropean Physical Journal: Special Topicsinfo:eu-repo/semantics/openAccess2021-10-22T18:57:06Zoai:repositorio.unesp.br:11449/188231Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:49:07.379082Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Synchronization structure of evolving epileptic networks using cross-entropy
title Synchronization structure of evolving epileptic networks using cross-entropy
spellingShingle Synchronization structure of evolving epileptic networks using cross-entropy
Rodrigues, Abner Cardoso
title_short Synchronization structure of evolving epileptic networks using cross-entropy
title_full Synchronization structure of evolving epileptic networks using cross-entropy
title_fullStr Synchronization structure of evolving epileptic networks using cross-entropy
title_full_unstemmed Synchronization structure of evolving epileptic networks using cross-entropy
title_sort Synchronization structure of evolving epileptic networks using cross-entropy
author Rodrigues, Abner Cardoso
author_facet Rodrigues, Abner Cardoso
Ferreira Caboclo, Luis Otavio Sales
Cerdeira, Hilda Alicia [UNESP]
Amaro, Edson
Machado, Birajara Soares
author_role author
author2 Ferreira Caboclo, Luis Otavio Sales
Cerdeira, Hilda Alicia [UNESP]
Amaro, Edson
Machado, Birajara Soares
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Hospital Israelita Albert Einstein
Universidade Estadual Paulista (Unesp)
Epistemic
dc.contributor.author.fl_str_mv Rodrigues, Abner Cardoso
Ferreira Caboclo, Luis Otavio Sales
Cerdeira, Hilda Alicia [UNESP]
Amaro, Edson
Machado, Birajara Soares
description In this paper we present connectivity patterns of evolving large scale epileptic networks. We employed a cross-entropy measure in the frequency domain on EEG signals to infer the networks, before and during episodes of epileptic seizures. This measure allowed us to make a richer portrait about the node interactions on the graph and to identify emergent structures associated with the synchronization of brain activity. Our results points to a more complex scenario of network organization than the synchronized/unsynchronized dichotomy, with two main results: first, showing regions with unsynchronized (or independent) behavior, even during absence seizures, contradicting the concept of hypersynchrony. Furthermore, we explore the cross-entropy fluctuations along the seizure: a group of nodes became more similar over time while another group became more different, showing a complementary behaviour and different local brain activities. These results bring new questions about the spreading and the sustenance of the epileptic seizures and others synchronization phenomena in living systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-01
2019-10-06T16:01:29Z
2019-10-06T16:01:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1140/epjst/e2018-800015-1
European Physical Journal: Special Topics, v. 227, n. 7-9, p. 883-893, 2018.
1951-6401
1951-6355
http://hdl.handle.net/11449/188231
10.1140/epjst/e2018-800015-1
2-s2.0-85055108543
url http://dx.doi.org/10.1140/epjst/e2018-800015-1
http://hdl.handle.net/11449/188231
identifier_str_mv European Physical Journal: Special Topics, v. 227, n. 7-9, p. 883-893, 2018.
1951-6401
1951-6355
10.1140/epjst/e2018-800015-1
2-s2.0-85055108543
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv European Physical Journal: Special Topics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 883-893
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129465648152576