A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows

Detalhes bibliográficos
Autor(a) principal: Martins, F. P. [UNESP]
Data de Publicação: 2015
Outros Autores: Oishi, C. M. [UNESP], Afonso, A. M., Alves, M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jcp.2015.08.038
http://hdl.handle.net/11449/160949
Resumo: This work presents a numerical application of a generic conformation tensor transformation for simulating highly elastic flows of non-Newtonian fluids typically observed in computational rheology. In the Kernel-conformation framework [14], the conformation tensor constitutive law for a viscoelastic fluid is transformed introducing a generic tensor transformation function. The numerical stability of the application of the Kernel-conformation for highly elastic flows is ultimately related with the specific kernel function used in the matrix transformation, but also to the existence of singularities introduced either by flow geometry or by the characteristics of the constitutive equation. In this work, we implement this methodology in a free-surface Marker-And-Cell discretization methodology implemented in a finite differences method. The main contributions of this work are two fold: on one hand, we demonstrate the accuracy of this Kernel-conformation formulation using a finite differences method and free surfaces; on the other hand, we assess the numerical efficiency of specific kernel functions at high-Weissenberg number flows. The numerical study considers different viscoelastic fluid flow problems, including the Poiseuille flow in a channel, the lid-driven cavity flow and the die-swell free surface flow. The numerical results demonstrate the adequacy of this methodology for high Weissenberg number flows using the Oldroyd-B model. (C) 2015 Elsevier Inc. All rights reserved.
id UNSP_0d84d0e3e8c0f1f67a1966bb6d63db98
oai_identifier_str oai:repositorio.unesp.br:11449/160949
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flowsHigh Weissenberg number problemKernel conformation tensorComplex flowsViscoelastic fluidsDie-swell phenomenonThis work presents a numerical application of a generic conformation tensor transformation for simulating highly elastic flows of non-Newtonian fluids typically observed in computational rheology. In the Kernel-conformation framework [14], the conformation tensor constitutive law for a viscoelastic fluid is transformed introducing a generic tensor transformation function. The numerical stability of the application of the Kernel-conformation for highly elastic flows is ultimately related with the specific kernel function used in the matrix transformation, but also to the existence of singularities introduced either by flow geometry or by the characteristics of the constitutive equation. In this work, we implement this methodology in a free-surface Marker-And-Cell discretization methodology implemented in a finite differences method. The main contributions of this work are two fold: on one hand, we demonstrate the accuracy of this Kernel-conformation formulation using a finite differences method and free surfaces; on the other hand, we assess the numerical efficiency of specific kernel functions at high-Weissenberg number flows. The numerical study considers different viscoelastic fluid flow problems, including the Poiseuille flow in a channel, the lid-driven cavity flow and the die-swell free surface flow. The numerical results demonstrate the adequacy of this methodology for high Weissenberg number flows using the Oldroyd-B model. (C) 2015 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundacao para a Ciencia e a Tecnologia (FCT), PortugalFCTCOMPETEFEDERUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Presidente Prudente, SP, BrazilUniv Porto, Fac Engn, CEFT, Dept Engn Quim, P-4100 Oporto, PortugalUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Presidente Prudente, SP, BrazilFAPESP: 2009/15892-9FAPESP: 2013/07375-0CNPq: 473589/2013-3CNPq: 309514/2013-4Fundacao para a Ciencia e a Tecnologia (FCT), Portugal: SFRH/BPD/75436/2010FEDER: PTDC/EME-MFE/114322/2009Elsevier B.V.Universidade Estadual Paulista (Unesp)Univ PortoMartins, F. P. [UNESP]Oishi, C. M. [UNESP]Afonso, A. M.Alves, M. A.2018-11-26T16:17:22Z2018-11-26T16:17:22Z2015-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article653-673application/pdfhttp://dx.doi.org/10.1016/j.jcp.2015.08.038Journal Of Computational Physics. San Diego: Academic Press Inc Elsevier Science, v. 302, p. 653-673, 2015.0021-9991http://hdl.handle.net/11449/16094910.1016/j.jcp.2015.08.038WOS:000364256100036WOS000364256100036.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Computational Physics2,047info:eu-repo/semantics/openAccess2024-06-19T14:31:54Zoai:repositorio.unesp.br:11449/160949Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:38:18.918765Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
title A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
spellingShingle A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
Martins, F. P. [UNESP]
High Weissenberg number problem
Kernel conformation tensor
Complex flows
Viscoelastic fluids
Die-swell phenomenon
title_short A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
title_full A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
title_fullStr A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
title_full_unstemmed A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
title_sort A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
author Martins, F. P. [UNESP]
author_facet Martins, F. P. [UNESP]
Oishi, C. M. [UNESP]
Afonso, A. M.
Alves, M. A.
author_role author
author2 Oishi, C. M. [UNESP]
Afonso, A. M.
Alves, M. A.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Univ Porto
dc.contributor.author.fl_str_mv Martins, F. P. [UNESP]
Oishi, C. M. [UNESP]
Afonso, A. M.
Alves, M. A.
dc.subject.por.fl_str_mv High Weissenberg number problem
Kernel conformation tensor
Complex flows
Viscoelastic fluids
Die-swell phenomenon
topic High Weissenberg number problem
Kernel conformation tensor
Complex flows
Viscoelastic fluids
Die-swell phenomenon
description This work presents a numerical application of a generic conformation tensor transformation for simulating highly elastic flows of non-Newtonian fluids typically observed in computational rheology. In the Kernel-conformation framework [14], the conformation tensor constitutive law for a viscoelastic fluid is transformed introducing a generic tensor transformation function. The numerical stability of the application of the Kernel-conformation for highly elastic flows is ultimately related with the specific kernel function used in the matrix transformation, but also to the existence of singularities introduced either by flow geometry or by the characteristics of the constitutive equation. In this work, we implement this methodology in a free-surface Marker-And-Cell discretization methodology implemented in a finite differences method. The main contributions of this work are two fold: on one hand, we demonstrate the accuracy of this Kernel-conformation formulation using a finite differences method and free surfaces; on the other hand, we assess the numerical efficiency of specific kernel functions at high-Weissenberg number flows. The numerical study considers different viscoelastic fluid flow problems, including the Poiseuille flow in a channel, the lid-driven cavity flow and the die-swell free surface flow. The numerical results demonstrate the adequacy of this methodology for high Weissenberg number flows using the Oldroyd-B model. (C) 2015 Elsevier Inc. All rights reserved.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
2018-11-26T16:17:22Z
2018-11-26T16:17:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jcp.2015.08.038
Journal Of Computational Physics. San Diego: Academic Press Inc Elsevier Science, v. 302, p. 653-673, 2015.
0021-9991
http://hdl.handle.net/11449/160949
10.1016/j.jcp.2015.08.038
WOS:000364256100036
WOS000364256100036.pdf
url http://dx.doi.org/10.1016/j.jcp.2015.08.038
http://hdl.handle.net/11449/160949
identifier_str_mv Journal Of Computational Physics. San Diego: Academic Press Inc Elsevier Science, v. 302, p. 653-673, 2015.
0021-9991
10.1016/j.jcp.2015.08.038
WOS:000364256100036
WOS000364256100036.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Computational Physics
2,047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 653-673
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128837479825408