Specific Heat Anomalies in Solids Described by a Multilevel Model

Detalhes bibliográficos
Autor(a) principal: Souza, Mariano de [UNESP]
Data de Publicação: 2016
Outros Autores: Paupitz, Ricardo [UNESP], Seridonio, Antonio [UNESP], Lagos, Roberto E. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s13538-016-0404-9
http://hdl.handle.net/11449/172590
Resumo: In the field of condensed matter physics, specific heat measurements can be considered as a pivotal experimental technique for characterizing the fundamental excitations involved in a certain phase transition. Indeed, phase transitions involving spin (de Souza et al. Phys. B Condens. Matter 404, 494 (2009) and Manna et al. Phys. Rev. Lett. 104, 016403 (2010)), charge (Pregelj et al. Phys. Rev. B 82, 144438 (2010)), lattice (Jesche et al. Phys. Rev. B 81, 134525 (2010)) (phonons) and orbital degrees of freedom, the interplay between ferromagnetism and superconductivity (Jesche et al. Phys. Rev. B 86, 020501 (2012)), Schottky-like anomalies in doped compounds (Lagos et al. Phys. C Supercond. 309, 170 (1998)), electronic levels in finite correlated systems (Macedo and Lagos J. Magn. Magn. Mater. 226, 105 (2001)), among other features, can be captured by means of high-resolution calorimetry. Furthermore, the entropy change associated with a first-order phase transition, no matter its nature, can be directly obtained upon integrating the specific heat over T, i.e., C(T)/T, in the temperature range of interest. Here, we report on a detailed analysis of the two-peak specific heat anomalies observed in several materials. Employing a simple multilevel model, varying the spacing between the energy levels Δi = (Ei−E0) and the degeneracy of each energy level gi, we derive the required conditions for the appearance of such anomalies. Our findings indicate that a ratio of (Formula presented.) 10 between the energy levels and a high degeneracy of one of the energy levels define the two-peaks regime in the specific heat. Our approach accurately matches recent experimental results. Furthermore, using a mean-field approach, we calculate the specific heat of a degenerate Schottky-like system undergoing a ferromagnetic (FM) phase transition. Our results reveal that as the degeneracy is increased the Schottky maximum in the specific heat becomes narrow while the peak associated with the FM transition remains unaffected.
id UNSP_0e64cb761443fa947fa00770a8d4ef0f
oai_identifier_str oai:repositorio.unesp.br:11449/172590
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Specific Heat Anomalies in Solids Described by a Multilevel ModelCorrelation effectsPartition functionSpecific heatIn the field of condensed matter physics, specific heat measurements can be considered as a pivotal experimental technique for characterizing the fundamental excitations involved in a certain phase transition. Indeed, phase transitions involving spin (de Souza et al. Phys. B Condens. Matter 404, 494 (2009) and Manna et al. Phys. Rev. Lett. 104, 016403 (2010)), charge (Pregelj et al. Phys. Rev. B 82, 144438 (2010)), lattice (Jesche et al. Phys. Rev. B 81, 134525 (2010)) (phonons) and orbital degrees of freedom, the interplay between ferromagnetism and superconductivity (Jesche et al. Phys. Rev. B 86, 020501 (2012)), Schottky-like anomalies in doped compounds (Lagos et al. Phys. C Supercond. 309, 170 (1998)), electronic levels in finite correlated systems (Macedo and Lagos J. Magn. Magn. Mater. 226, 105 (2001)), among other features, can be captured by means of high-resolution calorimetry. Furthermore, the entropy change associated with a first-order phase transition, no matter its nature, can be directly obtained upon integrating the specific heat over T, i.e., C(T)/T, in the temperature range of interest. Here, we report on a detailed analysis of the two-peak specific heat anomalies observed in several materials. Employing a simple multilevel model, varying the spacing between the energy levels Δi = (Ei−E0) and the degeneracy of each energy level gi, we derive the required conditions for the appearance of such anomalies. Our findings indicate that a ratio of (Formula presented.) 10 between the energy levels and a high degeneracy of one of the energy levels define the two-peaks regime in the specific heat. Our approach accurately matches recent experimental results. Furthermore, using a mean-field approach, we calculate the specific heat of a degenerate Schottky-like system undergoing a ferromagnetic (FM) phase transition. Our results reveal that as the degeneracy is increased the Schottky maximum in the specific heat becomes narrow while the peak associated with the FM transition remains unaffected.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física IGCE Unesp - Univ Estadual PaulistaDepartamento de Física e Química Unesp - Univ Estadual PaulistaInstitute of Semiconductor and Solid State Physics Johannes Kepler University LinzDepartamento de Física IGCE Unesp - Univ Estadual PaulistaDepartamento de Física e Química Unesp - Univ Estadual PaulistaFAPESP: 2014/15521-9FAPESP: 305472/2014-3FAPESP: 308298/2014-4FAPESP: 308977/2011-4FAPESP: 3652011/22050-4Universidade Estadual Paulista (Unesp)Johannes Kepler University LinzSouza, Mariano de [UNESP]Paupitz, Ricardo [UNESP]Seridonio, Antonio [UNESP]Lagos, Roberto E. [UNESP]2018-12-11T17:01:15Z2018-12-11T17:01:15Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article206-212application/pdfhttp://dx.doi.org/10.1007/s13538-016-0404-9Brazilian Journal of Physics, v. 46, n. 2, p. 206-212, 2016.1678-44480103-9733http://hdl.handle.net/11449/17259010.1007/s13538-016-0404-92-s2.0-849591831302-s2.0-84959183130.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physics0,276info:eu-repo/semantics/openAccess2023-11-17T06:16:01Zoai:repositorio.unesp.br:11449/172590Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:59:51.707984Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Specific Heat Anomalies in Solids Described by a Multilevel Model
title Specific Heat Anomalies in Solids Described by a Multilevel Model
spellingShingle Specific Heat Anomalies in Solids Described by a Multilevel Model
Souza, Mariano de [UNESP]
Correlation effects
Partition function
Specific heat
title_short Specific Heat Anomalies in Solids Described by a Multilevel Model
title_full Specific Heat Anomalies in Solids Described by a Multilevel Model
title_fullStr Specific Heat Anomalies in Solids Described by a Multilevel Model
title_full_unstemmed Specific Heat Anomalies in Solids Described by a Multilevel Model
title_sort Specific Heat Anomalies in Solids Described by a Multilevel Model
author Souza, Mariano de [UNESP]
author_facet Souza, Mariano de [UNESP]
Paupitz, Ricardo [UNESP]
Seridonio, Antonio [UNESP]
Lagos, Roberto E. [UNESP]
author_role author
author2 Paupitz, Ricardo [UNESP]
Seridonio, Antonio [UNESP]
Lagos, Roberto E. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Johannes Kepler University Linz
dc.contributor.author.fl_str_mv Souza, Mariano de [UNESP]
Paupitz, Ricardo [UNESP]
Seridonio, Antonio [UNESP]
Lagos, Roberto E. [UNESP]
dc.subject.por.fl_str_mv Correlation effects
Partition function
Specific heat
topic Correlation effects
Partition function
Specific heat
description In the field of condensed matter physics, specific heat measurements can be considered as a pivotal experimental technique for characterizing the fundamental excitations involved in a certain phase transition. Indeed, phase transitions involving spin (de Souza et al. Phys. B Condens. Matter 404, 494 (2009) and Manna et al. Phys. Rev. Lett. 104, 016403 (2010)), charge (Pregelj et al. Phys. Rev. B 82, 144438 (2010)), lattice (Jesche et al. Phys. Rev. B 81, 134525 (2010)) (phonons) and orbital degrees of freedom, the interplay between ferromagnetism and superconductivity (Jesche et al. Phys. Rev. B 86, 020501 (2012)), Schottky-like anomalies in doped compounds (Lagos et al. Phys. C Supercond. 309, 170 (1998)), electronic levels in finite correlated systems (Macedo and Lagos J. Magn. Magn. Mater. 226, 105 (2001)), among other features, can be captured by means of high-resolution calorimetry. Furthermore, the entropy change associated with a first-order phase transition, no matter its nature, can be directly obtained upon integrating the specific heat over T, i.e., C(T)/T, in the temperature range of interest. Here, we report on a detailed analysis of the two-peak specific heat anomalies observed in several materials. Employing a simple multilevel model, varying the spacing between the energy levels Δi = (Ei−E0) and the degeneracy of each energy level gi, we derive the required conditions for the appearance of such anomalies. Our findings indicate that a ratio of (Formula presented.) 10 between the energy levels and a high degeneracy of one of the energy levels define the two-peaks regime in the specific heat. Our approach accurately matches recent experimental results. Furthermore, using a mean-field approach, we calculate the specific heat of a degenerate Schottky-like system undergoing a ferromagnetic (FM) phase transition. Our results reveal that as the degeneracy is increased the Schottky maximum in the specific heat becomes narrow while the peak associated with the FM transition remains unaffected.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
2018-12-11T17:01:15Z
2018-12-11T17:01:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s13538-016-0404-9
Brazilian Journal of Physics, v. 46, n. 2, p. 206-212, 2016.
1678-4448
0103-9733
http://hdl.handle.net/11449/172590
10.1007/s13538-016-0404-9
2-s2.0-84959183130
2-s2.0-84959183130.pdf
url http://dx.doi.org/10.1007/s13538-016-0404-9
http://hdl.handle.net/11449/172590
identifier_str_mv Brazilian Journal of Physics, v. 46, n. 2, p. 206-212, 2016.
1678-4448
0103-9733
10.1007/s13538-016-0404-9
2-s2.0-84959183130
2-s2.0-84959183130.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
0,276
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 206-212
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128882655625216