The Einstein specific heat model for finite systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2016.02.010 http://hdl.handle.net/11449/172867 |
Resumo: | The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N. |
id |
UNSP_455f18dfefbc5600940cc02436c7a656 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172867 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The Einstein specific heat model for finite systemsEinstein modelFinite size systemsSpecific heatThe theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.Departamento de Química Universidade Federal de São Carlos (UFSCar)IGCE Unesp - Univ Estadual Paulista Departamento de FísicaInstitute of Semiconductor and Solid State Physics Johannes Kepler UniversityIGCE Unesp - Univ Estadual Paulista Departamento de FísicaUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Johannes Kepler UniversityBoscheto, E.De Souza, M. [UNESP]López-Castillo, A.2018-12-11T17:02:29Z2018-12-11T17:02:29Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article592-600application/pdfhttp://dx.doi.org/10.1016/j.physa.2016.02.010Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600.0378-4371http://hdl.handle.net/11449/17286710.1016/j.physa.2016.02.0102-s2.0-849643224682-s2.0-84964322468.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-12-07T06:16:31Zoai:repositorio.unesp.br:11449/172867Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:41:07.198578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The Einstein specific heat model for finite systems |
title |
The Einstein specific heat model for finite systems |
spellingShingle |
The Einstein specific heat model for finite systems Boscheto, E. Einstein model Finite size systems Specific heat |
title_short |
The Einstein specific heat model for finite systems |
title_full |
The Einstein specific heat model for finite systems |
title_fullStr |
The Einstein specific heat model for finite systems |
title_full_unstemmed |
The Einstein specific heat model for finite systems |
title_sort |
The Einstein specific heat model for finite systems |
author |
Boscheto, E. |
author_facet |
Boscheto, E. De Souza, M. [UNESP] López-Castillo, A. |
author_role |
author |
author2 |
De Souza, M. [UNESP] López-Castillo, A. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) Johannes Kepler University |
dc.contributor.author.fl_str_mv |
Boscheto, E. De Souza, M. [UNESP] López-Castillo, A. |
dc.subject.por.fl_str_mv |
Einstein model Finite size systems Specific heat |
topic |
Einstein model Finite size systems Specific heat |
description |
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-01 2018-12-11T17:02:29Z 2018-12-11T17:02:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2016.02.010 Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600. 0378-4371 http://hdl.handle.net/11449/172867 10.1016/j.physa.2016.02.010 2-s2.0-84964322468 2-s2.0-84964322468.pdf |
url |
http://dx.doi.org/10.1016/j.physa.2016.02.010 http://hdl.handle.net/11449/172867 |
identifier_str_mv |
Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600. 0378-4371 10.1016/j.physa.2016.02.010 2-s2.0-84964322468 2-s2.0-84964322468.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A: Statistical Mechanics and its Applications 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
592-600 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129106911428608 |