The Einstein specific heat model for finite systems

Detalhes bibliográficos
Autor(a) principal: Boscheto, E.
Data de Publicação: 2016
Outros Autores: De Souza, M. [UNESP], López-Castillo, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physa.2016.02.010
http://hdl.handle.net/11449/172867
Resumo: The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.
id UNSP_455f18dfefbc5600940cc02436c7a656
oai_identifier_str oai:repositorio.unesp.br:11449/172867
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The Einstein specific heat model for finite systemsEinstein modelFinite size systemsSpecific heatThe theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.Departamento de Química Universidade Federal de São Carlos (UFSCar)IGCE Unesp - Univ Estadual Paulista Departamento de FísicaInstitute of Semiconductor and Solid State Physics Johannes Kepler UniversityIGCE Unesp - Univ Estadual Paulista Departamento de FísicaUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Johannes Kepler UniversityBoscheto, E.De Souza, M. [UNESP]López-Castillo, A.2018-12-11T17:02:29Z2018-12-11T17:02:29Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article592-600application/pdfhttp://dx.doi.org/10.1016/j.physa.2016.02.010Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600.0378-4371http://hdl.handle.net/11449/17286710.1016/j.physa.2016.02.0102-s2.0-849643224682-s2.0-84964322468.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-12-07T06:16:31Zoai:repositorio.unesp.br:11449/172867Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:41:07.198578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The Einstein specific heat model for finite systems
title The Einstein specific heat model for finite systems
spellingShingle The Einstein specific heat model for finite systems
Boscheto, E.
Einstein model
Finite size systems
Specific heat
title_short The Einstein specific heat model for finite systems
title_full The Einstein specific heat model for finite systems
title_fullStr The Einstein specific heat model for finite systems
title_full_unstemmed The Einstein specific heat model for finite systems
title_sort The Einstein specific heat model for finite systems
author Boscheto, E.
author_facet Boscheto, E.
De Souza, M. [UNESP]
López-Castillo, A.
author_role author
author2 De Souza, M. [UNESP]
López-Castillo, A.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
Johannes Kepler University
dc.contributor.author.fl_str_mv Boscheto, E.
De Souza, M. [UNESP]
López-Castillo, A.
dc.subject.por.fl_str_mv Einstein model
Finite size systems
Specific heat
topic Einstein model
Finite size systems
Specific heat
description The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
2018-12-11T17:02:29Z
2018-12-11T17:02:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physa.2016.02.010
Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600.
0378-4371
http://hdl.handle.net/11449/172867
10.1016/j.physa.2016.02.010
2-s2.0-84964322468
2-s2.0-84964322468.pdf
url http://dx.doi.org/10.1016/j.physa.2016.02.010
http://hdl.handle.net/11449/172867
identifier_str_mv Physica A: Statistical Mechanics and its Applications, v. 451, p. 592-600.
0378-4371
10.1016/j.physa.2016.02.010
2-s2.0-84964322468
2-s2.0-84964322468.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica A: Statistical Mechanics and its Applications
0,773
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 592-600
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129106911428608