Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Victor Hugo Costa de
Data de Publicação: 2015
Outros Autores: Barbosa, Cleisson Vieira, Silva, Cleiton Carvalho, Moura, Elineudo Pinho de, Rebouças Filho, Pedro Pedrosa, Papa, João Paulo [UNESP], Tavares, João Manuel Ribeiro da Silva
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/s150612474
http://hdl.handle.net/11449/131395
Resumo: Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed.
id UNSP_16ee273c2229e3f41ddaa9a843b183f8
oai_identifier_str oai:repositorio.unesp.br:11449/131395
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloyMetric functionMicrostructural characterizationOptimum path forestSignal classificationUltrasonic sensorSecondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed.Financiadora de Estudos e Projetos (FINEP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de MateriaisUniversidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de MateriaisUniversidade do Porto, Departamento de Engenharia Mecânica, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial,Universidade Estadual Paulista, Departamento de Computação, Faculdade de Ciências de BauruCNPq: 470501/2013-8CNPq: 301928/2014-2Universidade de Fortaleza (UNIFOR)Universidade Federal do Ceará (UFC)Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)Universidade Estadual Paulista (Unesp)Universidade do PortoAlbuquerque, Victor Hugo Costa deBarbosa, Cleisson VieiraSilva, Cleiton CarvalhoMoura, Elineudo Pinho deRebouças Filho, Pedro PedrosaPapa, João Paulo [UNESP]Tavares, João Manuel Ribeiro da Silva2015-12-07T15:34:46Z2015-12-07T15:34:46Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12474-12497application/pdfhttp://dx.doi.org/10.3390/s150612474Sensors (Basel, Switzerland), v. 15, n. 6, p. 12474-12497, 2015.1424-8220http://hdl.handle.net/11449/13139510.3390/s150612474PMC4507598.pdf903918293274719426024416PMC4507598PubMedreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSensors (Basel, Switzerland)2.4750,584info:eu-repo/semantics/openAccess2024-04-23T16:10:45Zoai:repositorio.unesp.br:11449/131395Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:47:09.600747Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
title Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
spellingShingle Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
Albuquerque, Victor Hugo Costa de
Metric function
Microstructural characterization
Optimum path forest
Signal classification
Ultrasonic sensor
title_short Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
title_full Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
title_fullStr Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
title_full_unstemmed Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
title_sort Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
author Albuquerque, Victor Hugo Costa de
author_facet Albuquerque, Victor Hugo Costa de
Barbosa, Cleisson Vieira
Silva, Cleiton Carvalho
Moura, Elineudo Pinho de
Rebouças Filho, Pedro Pedrosa
Papa, João Paulo [UNESP]
Tavares, João Manuel Ribeiro da Silva
author_role author
author2 Barbosa, Cleisson Vieira
Silva, Cleiton Carvalho
Moura, Elineudo Pinho de
Rebouças Filho, Pedro Pedrosa
Papa, João Paulo [UNESP]
Tavares, João Manuel Ribeiro da Silva
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de Fortaleza (UNIFOR)
Universidade Federal do Ceará (UFC)
Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
Universidade Estadual Paulista (Unesp)
Universidade do Porto
dc.contributor.author.fl_str_mv Albuquerque, Victor Hugo Costa de
Barbosa, Cleisson Vieira
Silva, Cleiton Carvalho
Moura, Elineudo Pinho de
Rebouças Filho, Pedro Pedrosa
Papa, João Paulo [UNESP]
Tavares, João Manuel Ribeiro da Silva
dc.subject.por.fl_str_mv Metric function
Microstructural characterization
Optimum path forest
Signal classification
Ultrasonic sensor
topic Metric function
Microstructural characterization
Optimum path forest
Signal classification
Ultrasonic sensor
description Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-07T15:34:46Z
2015-12-07T15:34:46Z
2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/s150612474
Sensors (Basel, Switzerland), v. 15, n. 6, p. 12474-12497, 2015.
1424-8220
http://hdl.handle.net/11449/131395
10.3390/s150612474
PMC4507598.pdf
9039182932747194
26024416
PMC4507598
url http://dx.doi.org/10.3390/s150612474
http://hdl.handle.net/11449/131395
identifier_str_mv Sensors (Basel, Switzerland), v. 15, n. 6, p. 12474-12497, 2015.
1424-8220
10.3390/s150612474
PMC4507598.pdf
9039182932747194
26024416
PMC4507598
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sensors (Basel, Switzerland)
2.475
0,584
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12474-12497
application/pdf
dc.source.none.fl_str_mv PubMed
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128562854625280