A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TSG.2018.2821765 http://hdl.handle.net/11449/185671 |
Resumo: | Probabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications. |
id |
UNSP_c13fb43bf3935bcb02f68c5c3b0ee165 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/185671 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses DetectionOptimum-path forestprobabilistic classificationnon-technical lossesProbabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos, Dept Comp, BR-13565 Sao Carlos, SP, BrazilUniv Western Sao Paulo, Inst Informat, BR-19065 Presidente Prudente, BrazilCatarinense Fed Inst, Dept Elect Engn, BR-89163356 Rio Do Sul, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, BrazilCNPq: 306166/2014-3CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/19403-6FAPESP: 2017/02286-0Ieee-inst Electrical Electronics Engineers IncUniversidade Federal de São Carlos (UFSCar)Univ Western Sao PauloCatarinense Fed InstUniversidade Estadual Paulista (Unesp)Fernandes, Silas E. N.Pereira, Danillo R.Ramos, Caio C. O.Souza, Andre N. [UNESP]Gastaldello, Danilo S. [UNESP]Papa, Joao P. [UNESP]2019-10-04T12:37:26Z2019-10-04T12:37:26Z2019-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3226-3235http://dx.doi.org/10.1109/TSG.2018.2821765Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.1949-3053http://hdl.handle.net/11449/18567110.1109/TSG.2018.2821765WOS:000466603800077Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Smart Gridinfo:eu-repo/semantics/openAccess2024-06-28T13:34:14Zoai:repositorio.unesp.br:11449/185671Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:14:02.375875Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
title |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
spellingShingle |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection Fernandes, Silas E. N. Optimum-path forest probabilistic classification non-technical losses |
title_short |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
title_full |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
title_fullStr |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
title_full_unstemmed |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
title_sort |
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection |
author |
Fernandes, Silas E. N. |
author_facet |
Fernandes, Silas E. N. Pereira, Danillo R. Ramos, Caio C. O. Souza, Andre N. [UNESP] Gastaldello, Danilo S. [UNESP] Papa, Joao P. [UNESP] |
author_role |
author |
author2 |
Pereira, Danillo R. Ramos, Caio C. O. Souza, Andre N. [UNESP] Gastaldello, Danilo S. [UNESP] Papa, Joao P. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Univ Western Sao Paulo Catarinense Fed Inst Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Fernandes, Silas E. N. Pereira, Danillo R. Ramos, Caio C. O. Souza, Andre N. [UNESP] Gastaldello, Danilo S. [UNESP] Papa, Joao P. [UNESP] |
dc.subject.por.fl_str_mv |
Optimum-path forest probabilistic classification non-technical losses |
topic |
Optimum-path forest probabilistic classification non-technical losses |
description |
Probabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T12:37:26Z 2019-10-04T12:37:26Z 2019-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TSG.2018.2821765 Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019. 1949-3053 http://hdl.handle.net/11449/185671 10.1109/TSG.2018.2821765 WOS:000466603800077 |
url |
http://dx.doi.org/10.1109/TSG.2018.2821765 http://hdl.handle.net/11449/185671 |
identifier_str_mv |
Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019. 1949-3053 10.1109/TSG.2018.2821765 WOS:000466603800077 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Transactions On Smart Grid |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3226-3235 |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128909954252800 |