A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection

Detalhes bibliográficos
Autor(a) principal: Fernandes, Silas E. N.
Data de Publicação: 2019
Outros Autores: Pereira, Danillo R., Ramos, Caio C. O., Souza, Andre N. [UNESP], Gastaldello, Danilo S. [UNESP], Papa, Joao P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TSG.2018.2821765
http://hdl.handle.net/11449/185671
Resumo: Probabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.
id UNSP_c13fb43bf3935bcb02f68c5c3b0ee165
oai_identifier_str oai:repositorio.unesp.br:11449/185671
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses DetectionOptimum-path forestprobabilistic classificationnon-technical lossesProbabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos, Dept Comp, BR-13565 Sao Carlos, SP, BrazilUniv Western Sao Paulo, Inst Informat, BR-19065 Presidente Prudente, BrazilCatarinense Fed Inst, Dept Elect Engn, BR-89163356 Rio Do Sul, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, BrazilCNPq: 306166/2014-3CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/19403-6FAPESP: 2017/02286-0Ieee-inst Electrical Electronics Engineers IncUniversidade Federal de São Carlos (UFSCar)Univ Western Sao PauloCatarinense Fed InstUniversidade Estadual Paulista (Unesp)Fernandes, Silas E. N.Pereira, Danillo R.Ramos, Caio C. O.Souza, Andre N. [UNESP]Gastaldello, Danilo S. [UNESP]Papa, Joao P. [UNESP]2019-10-04T12:37:26Z2019-10-04T12:37:26Z2019-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3226-3235http://dx.doi.org/10.1109/TSG.2018.2821765Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.1949-3053http://hdl.handle.net/11449/18567110.1109/TSG.2018.2821765WOS:000466603800077Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Smart Gridinfo:eu-repo/semantics/openAccess2024-06-28T13:34:14Zoai:repositorio.unesp.br:11449/185671Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:14:02.375875Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
title A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
spellingShingle A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
Fernandes, Silas E. N.
Optimum-path forest
probabilistic classification
non-technical losses
title_short A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
title_full A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
title_fullStr A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
title_full_unstemmed A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
title_sort A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
author Fernandes, Silas E. N.
author_facet Fernandes, Silas E. N.
Pereira, Danillo R.
Ramos, Caio C. O.
Souza, Andre N. [UNESP]
Gastaldello, Danilo S. [UNESP]
Papa, Joao P. [UNESP]
author_role author
author2 Pereira, Danillo R.
Ramos, Caio C. O.
Souza, Andre N. [UNESP]
Gastaldello, Danilo S. [UNESP]
Papa, Joao P. [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Univ Western Sao Paulo
Catarinense Fed Inst
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Fernandes, Silas E. N.
Pereira, Danillo R.
Ramos, Caio C. O.
Souza, Andre N. [UNESP]
Gastaldello, Danilo S. [UNESP]
Papa, Joao P. [UNESP]
dc.subject.por.fl_str_mv Optimum-path forest
probabilistic classification
non-technical losses
topic Optimum-path forest
probabilistic classification
non-technical losses
description Probabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:37:26Z
2019-10-04T12:37:26Z
2019-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TSG.2018.2821765
Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.
1949-3053
http://hdl.handle.net/11449/185671
10.1109/TSG.2018.2821765
WOS:000466603800077
url http://dx.doi.org/10.1109/TSG.2018.2821765
http://hdl.handle.net/11449/185671
identifier_str_mv Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.
1949-3053
10.1109/TSG.2018.2821765
WOS:000466603800077
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Transactions On Smart Grid
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3226-3235
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128909954252800