Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training

Detalhes bibliográficos
Autor(a) principal: Barros, Ana Claudia [UNESP]
Data de Publicação: 2015
Outros Autores: Tonelli-Neto, Mauro S., Magalini Santos Decanini, Jose Guilherme, Minussi, Carlos Roberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/15325008.2015.1073814
http://hdl.handle.net/11449/160906
Resumo: This article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software.
id UNSP_172e3e1b8e97f2ce8453747879491ac0
oai_identifier_str oai:repositorio.unesp.br:11449/160906
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Trainingwavelet transformEuclidean ARTMAP neural networkcontinuous trainingpower quality disturbancepower distribution systemThis article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, BrazilInst Fed Educ Ciencia & Tecnol Sao Paulo, Votuporanga, SP, BrazilInst Fed Educ Ciencia & Tecnol Sao Paulo, Presidente Epitacio, SP, BrazilUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, BrazilTaylor & Francis IncUniversidade Estadual Paulista (Unesp)Inst Fed Educ Ciencia & Tecnol Sao PauloBarros, Ana Claudia [UNESP]Tonelli-Neto, Mauro S.Magalini Santos Decanini, Jose GuilhermeMinussi, Carlos Roberto [UNESP]2018-11-26T16:17:13Z2018-11-26T16:17:13Z2015-11-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2178-2188application/pdfhttp://dx.doi.org/10.1080/15325008.2015.1073814Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015.1532-5008http://hdl.handle.net/11449/16090610.1080/15325008.2015.1073814WOS:000362940700007WOS000362940700007.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectric Power Components And Systems0,373info:eu-repo/semantics/openAccess2024-07-04T19:06:57Zoai:repositorio.unesp.br:11449/160906Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:47:29.036814Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
title Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
spellingShingle Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
Barros, Ana Claudia [UNESP]
wavelet transform
Euclidean ARTMAP neural network
continuous training
power quality disturbance
power distribution system
title_short Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
title_full Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
title_fullStr Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
title_full_unstemmed Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
title_sort Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
author Barros, Ana Claudia [UNESP]
author_facet Barros, Ana Claudia [UNESP]
Tonelli-Neto, Mauro S.
Magalini Santos Decanini, Jose Guilherme
Minussi, Carlos Roberto [UNESP]
author_role author
author2 Tonelli-Neto, Mauro S.
Magalini Santos Decanini, Jose Guilherme
Minussi, Carlos Roberto [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Inst Fed Educ Ciencia & Tecnol Sao Paulo
dc.contributor.author.fl_str_mv Barros, Ana Claudia [UNESP]
Tonelli-Neto, Mauro S.
Magalini Santos Decanini, Jose Guilherme
Minussi, Carlos Roberto [UNESP]
dc.subject.por.fl_str_mv wavelet transform
Euclidean ARTMAP neural network
continuous training
power quality disturbance
power distribution system
topic wavelet transform
Euclidean ARTMAP neural network
continuous training
power quality disturbance
power distribution system
description This article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-26
2018-11-26T16:17:13Z
2018-11-26T16:17:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/15325008.2015.1073814
Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015.
1532-5008
http://hdl.handle.net/11449/160906
10.1080/15325008.2015.1073814
WOS:000362940700007
WOS000362940700007.pdf
url http://dx.doi.org/10.1080/15325008.2015.1073814
http://hdl.handle.net/11449/160906
identifier_str_mv Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015.
1532-5008
10.1080/15325008.2015.1073814
WOS:000362940700007
WOS000362940700007.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Electric Power Components And Systems
0,373
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2178-2188
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Inc
publisher.none.fl_str_mv Taylor & Francis Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129552552034304