Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/15325008.2015.1073814 http://hdl.handle.net/11449/160906 |
Resumo: | This article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software. |
id |
UNSP_172e3e1b8e97f2ce8453747879491ac0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/160906 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Trainingwavelet transformEuclidean ARTMAP neural networkcontinuous trainingpower quality disturbancepower distribution systemThis article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, BrazilInst Fed Educ Ciencia & Tecnol Sao Paulo, Votuporanga, SP, BrazilInst Fed Educ Ciencia & Tecnol Sao Paulo, Presidente Epitacio, SP, BrazilUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, BrazilTaylor & Francis IncUniversidade Estadual Paulista (Unesp)Inst Fed Educ Ciencia & Tecnol Sao PauloBarros, Ana Claudia [UNESP]Tonelli-Neto, Mauro S.Magalini Santos Decanini, Jose GuilhermeMinussi, Carlos Roberto [UNESP]2018-11-26T16:17:13Z2018-11-26T16:17:13Z2015-11-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2178-2188application/pdfhttp://dx.doi.org/10.1080/15325008.2015.1073814Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015.1532-5008http://hdl.handle.net/11449/16090610.1080/15325008.2015.1073814WOS:000362940700007WOS000362940700007.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectric Power Components And Systems0,373info:eu-repo/semantics/openAccess2024-07-04T19:06:57Zoai:repositorio.unesp.br:11449/160906Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:47:29.036814Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
title |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
spellingShingle |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training Barros, Ana Claudia [UNESP] wavelet transform Euclidean ARTMAP neural network continuous training power quality disturbance power distribution system |
title_short |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
title_full |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
title_fullStr |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
title_full_unstemmed |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
title_sort |
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training |
author |
Barros, Ana Claudia [UNESP] |
author_facet |
Barros, Ana Claudia [UNESP] Tonelli-Neto, Mauro S. Magalini Santos Decanini, Jose Guilherme Minussi, Carlos Roberto [UNESP] |
author_role |
author |
author2 |
Tonelli-Neto, Mauro S. Magalini Santos Decanini, Jose Guilherme Minussi, Carlos Roberto [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Inst Fed Educ Ciencia & Tecnol Sao Paulo |
dc.contributor.author.fl_str_mv |
Barros, Ana Claudia [UNESP] Tonelli-Neto, Mauro S. Magalini Santos Decanini, Jose Guilherme Minussi, Carlos Roberto [UNESP] |
dc.subject.por.fl_str_mv |
wavelet transform Euclidean ARTMAP neural network continuous training power quality disturbance power distribution system |
topic |
wavelet transform Euclidean ARTMAP neural network continuous training power quality disturbance power distribution system |
description |
This article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-26 2018-11-26T16:17:13Z 2018-11-26T16:17:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/15325008.2015.1073814 Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015. 1532-5008 http://hdl.handle.net/11449/160906 10.1080/15325008.2015.1073814 WOS:000362940700007 WOS000362940700007.pdf |
url |
http://dx.doi.org/10.1080/15325008.2015.1073814 http://hdl.handle.net/11449/160906 |
identifier_str_mv |
Electric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015. 1532-5008 10.1080/15325008.2015.1073814 WOS:000362940700007 WOS000362940700007.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Electric Power Components And Systems 0,373 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2178-2188 application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Inc |
publisher.none.fl_str_mv |
Taylor & Francis Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129552552034304 |