Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s42452-020-2988-5 http://hdl.handle.net/11449/207031 |
Resumo: | Electrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series. |
id |
UNSP_20c5cd030edc3f14eae6560c35c9aadf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207031 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysisForecastingFuzzy ARTMAPPower loadSingular spectrum analysisElectrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Electrical Engineering Department UNESP-FEISEngineering and Exact Sciences Center - CECE Western Parana State University – UNIOESTEUNILA Federal Latin-American Integration UniversityElectrical Engineering Department UNESP-FEISUniversidade Estadual Paulista (Unesp)Western Parana State University – UNIOESTEFederal Latin-American Integration UniversityMüller, M. R. [UNESP]Gaio, G.Carreno, E. M.Lotufo, A. D.P. [UNESP]Teixeira, L. A.2021-06-25T10:47:53Z2021-06-25T10:47:53Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s42452-020-2988-5SN Applied Sciences, v. 2, n. 7, 2020.2523-3971http://hdl.handle.net/11449/20703110.1007/s42452-020-2988-52-s2.0-85098319885Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSN Applied Sciencesinfo:eu-repo/semantics/openAccess2024-07-04T19:06:36Zoai:repositorio.unesp.br:11449/207031Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:07:20.614462Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
title |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
spellingShingle |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis Müller, M. R. [UNESP] Forecasting Fuzzy ARTMAP Power load Singular spectrum analysis |
title_short |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
title_full |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
title_fullStr |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
title_full_unstemmed |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
title_sort |
Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis |
author |
Müller, M. R. [UNESP] |
author_facet |
Müller, M. R. [UNESP] Gaio, G. Carreno, E. M. Lotufo, A. D.P. [UNESP] Teixeira, L. A. |
author_role |
author |
author2 |
Gaio, G. Carreno, E. M. Lotufo, A. D.P. [UNESP] Teixeira, L. A. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Western Parana State University – UNIOESTE Federal Latin-American Integration University |
dc.contributor.author.fl_str_mv |
Müller, M. R. [UNESP] Gaio, G. Carreno, E. M. Lotufo, A. D.P. [UNESP] Teixeira, L. A. |
dc.subject.por.fl_str_mv |
Forecasting Fuzzy ARTMAP Power load Singular spectrum analysis |
topic |
Forecasting Fuzzy ARTMAP Power load Singular spectrum analysis |
description |
Electrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-01 2021-06-25T10:47:53Z 2021-06-25T10:47:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s42452-020-2988-5 SN Applied Sciences, v. 2, n. 7, 2020. 2523-3971 http://hdl.handle.net/11449/207031 10.1007/s42452-020-2988-5 2-s2.0-85098319885 |
url |
http://dx.doi.org/10.1007/s42452-020-2988-5 http://hdl.handle.net/11449/207031 |
identifier_str_mv |
SN Applied Sciences, v. 2, n. 7, 2020. 2523-3971 10.1007/s42452-020-2988-5 2-s2.0-85098319885 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SN Applied Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129287492993024 |