Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis

Detalhes bibliográficos
Autor(a) principal: Müller, M. R. [UNESP]
Data de Publicação: 2020
Outros Autores: Gaio, G., Carreno, E. M., Lotufo, A. D.P. [UNESP], Teixeira, L. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s42452-020-2988-5
http://hdl.handle.net/11449/207031
Resumo: Electrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series.
id UNSP_20c5cd030edc3f14eae6560c35c9aadf
oai_identifier_str oai:repositorio.unesp.br:11449/207031
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysisForecastingFuzzy ARTMAPPower loadSingular spectrum analysisElectrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Electrical Engineering Department UNESP-FEISEngineering and Exact Sciences Center - CECE Western Parana State University – UNIOESTEUNILA Federal Latin-American Integration UniversityElectrical Engineering Department UNESP-FEISUniversidade Estadual Paulista (Unesp)Western Parana State University – UNIOESTEFederal Latin-American Integration UniversityMüller, M. R. [UNESP]Gaio, G.Carreno, E. M.Lotufo, A. D.P. [UNESP]Teixeira, L. A.2021-06-25T10:47:53Z2021-06-25T10:47:53Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s42452-020-2988-5SN Applied Sciences, v. 2, n. 7, 2020.2523-3971http://hdl.handle.net/11449/20703110.1007/s42452-020-2988-52-s2.0-85098319885Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSN Applied Sciencesinfo:eu-repo/semantics/openAccess2024-07-04T19:06:36Zoai:repositorio.unesp.br:11449/207031Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:07:20.614462Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
title Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
spellingShingle Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
Müller, M. R. [UNESP]
Forecasting
Fuzzy ARTMAP
Power load
Singular spectrum analysis
title_short Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
title_full Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
title_fullStr Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
title_full_unstemmed Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
title_sort Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
author Müller, M. R. [UNESP]
author_facet Müller, M. R. [UNESP]
Gaio, G.
Carreno, E. M.
Lotufo, A. D.P. [UNESP]
Teixeira, L. A.
author_role author
author2 Gaio, G.
Carreno, E. M.
Lotufo, A. D.P. [UNESP]
Teixeira, L. A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Western Parana State University – UNIOESTE
Federal Latin-American Integration University
dc.contributor.author.fl_str_mv Müller, M. R. [UNESP]
Gaio, G.
Carreno, E. M.
Lotufo, A. D.P. [UNESP]
Teixeira, L. A.
dc.subject.por.fl_str_mv Forecasting
Fuzzy ARTMAP
Power load
Singular spectrum analysis
topic Forecasting
Fuzzy ARTMAP
Power load
Singular spectrum analysis
description Electrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-01
2021-06-25T10:47:53Z
2021-06-25T10:47:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s42452-020-2988-5
SN Applied Sciences, v. 2, n. 7, 2020.
2523-3971
http://hdl.handle.net/11449/207031
10.1007/s42452-020-2988-5
2-s2.0-85098319885
url http://dx.doi.org/10.1007/s42452-020-2988-5
http://hdl.handle.net/11449/207031
identifier_str_mv SN Applied Sciences, v. 2, n. 7, 2020.
2523-3971
10.1007/s42452-020-2988-5
2-s2.0-85098319885
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SN Applied Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129287492993024