Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments

Detalhes bibliográficos
Autor(a) principal: Carvalho, H. W.P. [UNESP]
Data de Publicação: 2018
Outros Autores: Leroux, F., Briois, V., Santilli, C. V. [UNESP], Pulcinelli, S. H. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1039/C8RA07611A
http://hdl.handle.net/11449/189808
Resumo: In-depth understanding of the thermal stability of polymer-clay nanocomposites requires the use of advanced time-resolved techniques combined with multivariate data analysis, as well as the preparation of layered nanofillers with well-defined composition. The layered double hydroxide (LDH) compounds Zn2Al(OH)6·nH2O, Zn2Al0.75Fe0.25(OH)6·nH2O, ZnCuAl(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O were prepared, each designed to specifically identify the physical barrier, radical trapping, and char formation contributions to the thermal stability of the PMMA-LDH nanocomposites. The unique combination of conventional methods (TG, DSC, and Raman spectroscopy) and synchrotron radiation techniques (XAS and WAXS), applied during PMMA-LDH heating, revealed the synergetic (of iron) and antagonist (of copper) effects of the LDH layers transformations on the three main endothermic steps of mass loss of the polymer. The diffusion barrier effect was proved by the downshift of the PMMA thermal decomposition temperature caused by the decrease of the LDH edifice thermostability when divalent cations were substituted in the LDH (passing from PMMA-Zn2Al(OH)6·nH2O to PMMA-ZnCuAl(OH)6·nH2O). For PMMA-Zn2Al0.75Fe0.25(OH)6·nH2O, a cooperative contribution of iron reduction, stabilisation of layered edifice, and radical trapping effects was observed for the thermal stability of the nanocomposite. LDH also acted as a diffusion barrier to the efflux and evaporation of depolymerized species, favouring the charring which exerts an additional contribution to thermal stability of the PMMA-LDH nanocomposites.
id UNSP_179c71930563e616a90803cdd45930be
oai_identifier_str oai:repositorio.unesp.br:11449/189808
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experimentsIn-depth understanding of the thermal stability of polymer-clay nanocomposites requires the use of advanced time-resolved techniques combined with multivariate data analysis, as well as the preparation of layered nanofillers with well-defined composition. The layered double hydroxide (LDH) compounds Zn2Al(OH)6·nH2O, Zn2Al0.75Fe0.25(OH)6·nH2O, ZnCuAl(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O were prepared, each designed to specifically identify the physical barrier, radical trapping, and char formation contributions to the thermal stability of the PMMA-LDH nanocomposites. The unique combination of conventional methods (TG, DSC, and Raman spectroscopy) and synchrotron radiation techniques (XAS and WAXS), applied during PMMA-LDH heating, revealed the synergetic (of iron) and antagonist (of copper) effects of the LDH layers transformations on the three main endothermic steps of mass loss of the polymer. The diffusion barrier effect was proved by the downshift of the PMMA thermal decomposition temperature caused by the decrease of the LDH edifice thermostability when divalent cations were substituted in the LDH (passing from PMMA-Zn2Al(OH)6·nH2O to PMMA-ZnCuAl(OH)6·nH2O). For PMMA-Zn2Al0.75Fe0.25(OH)6·nH2O, a cooperative contribution of iron reduction, stabilisation of layered edifice, and radical trapping effects was observed for the thermal stability of the nanocomposite. LDH also acted as a diffusion barrier to the efflux and evaporation of depolymerized species, favouring the charring which exerts an additional contribution to thermal stability of the PMMA-LDH nanocomposites.Universidade Estadual Paulista (UNESP) Instituto de Química, Rua Prof. Francisco Degni 55ICCF Université Clermont Auvergne UMR CNRS 6296 SIGMA Clermont, 24 av. des LandaisSynchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48Universidade Estadual Paulista (UNESP) Instituto de Química, Rua Prof. Francisco Degni 55Universidade Estadual Paulista (Unesp)SIGMA ClermontSynchrotron SOLEILCarvalho, H. W.P. [UNESP]Leroux, F.Briois, V.Santilli, C. V. [UNESP]Pulcinelli, S. H. [UNESP]2019-10-06T16:52:48Z2019-10-06T16:52:48Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article34670-34681http://dx.doi.org/10.1039/C8RA07611ARSC Advances, v. 8, n. 60, p. 34670-34681, 2018.2046-2069http://hdl.handle.net/11449/18980810.1039/C8RA07611A2-s2.0-8505491896555842986818708650000-0002-8356-8093Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRSC Advancesinfo:eu-repo/semantics/openAccess2021-10-23T12:39:49Zoai:repositorio.unesp.br:11449/189808Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T12:39:49Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
title Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
spellingShingle Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
Carvalho, H. W.P. [UNESP]
title_short Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
title_full Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
title_fullStr Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
title_full_unstemmed Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
title_sort Thermal stability of PMMA-LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments
author Carvalho, H. W.P. [UNESP]
author_facet Carvalho, H. W.P. [UNESP]
Leroux, F.
Briois, V.
Santilli, C. V. [UNESP]
Pulcinelli, S. H. [UNESP]
author_role author
author2 Leroux, F.
Briois, V.
Santilli, C. V. [UNESP]
Pulcinelli, S. H. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
SIGMA Clermont
Synchrotron SOLEIL
dc.contributor.author.fl_str_mv Carvalho, H. W.P. [UNESP]
Leroux, F.
Briois, V.
Santilli, C. V. [UNESP]
Pulcinelli, S. H. [UNESP]
description In-depth understanding of the thermal stability of polymer-clay nanocomposites requires the use of advanced time-resolved techniques combined with multivariate data analysis, as well as the preparation of layered nanofillers with well-defined composition. The layered double hydroxide (LDH) compounds Zn2Al(OH)6·nH2O, Zn2Al0.75Fe0.25(OH)6·nH2O, ZnCuAl(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O were prepared, each designed to specifically identify the physical barrier, radical trapping, and char formation contributions to the thermal stability of the PMMA-LDH nanocomposites. The unique combination of conventional methods (TG, DSC, and Raman spectroscopy) and synchrotron radiation techniques (XAS and WAXS), applied during PMMA-LDH heating, revealed the synergetic (of iron) and antagonist (of copper) effects of the LDH layers transformations on the three main endothermic steps of mass loss of the polymer. The diffusion barrier effect was proved by the downshift of the PMMA thermal decomposition temperature caused by the decrease of the LDH edifice thermostability when divalent cations were substituted in the LDH (passing from PMMA-Zn2Al(OH)6·nH2O to PMMA-ZnCuAl(OH)6·nH2O). For PMMA-Zn2Al0.75Fe0.25(OH)6·nH2O, a cooperative contribution of iron reduction, stabilisation of layered edifice, and radical trapping effects was observed for the thermal stability of the nanocomposite. LDH also acted as a diffusion barrier to the efflux and evaporation of depolymerized species, favouring the charring which exerts an additional contribution to thermal stability of the PMMA-LDH nanocomposites.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2019-10-06T16:52:48Z
2019-10-06T16:52:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1039/C8RA07611A
RSC Advances, v. 8, n. 60, p. 34670-34681, 2018.
2046-2069
http://hdl.handle.net/11449/189808
10.1039/C8RA07611A
2-s2.0-85054918965
5584298681870865
0000-0002-8356-8093
url http://dx.doi.org/10.1039/C8RA07611A
http://hdl.handle.net/11449/189808
identifier_str_mv RSC Advances, v. 8, n. 60, p. 34670-34681, 2018.
2046-2069
10.1039/C8RA07611A
2-s2.0-85054918965
5584298681870865
0000-0002-8356-8093
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv RSC Advances
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 34670-34681
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803649540051435520