Data Issues in Spatial Electric Load Forecasting

Detalhes bibliográficos
Autor(a) principal: Melo, J. D. [UNESP]
Data de Publicação: 2014
Outros Autores: Padilha-Feltrin, A. [UNESP], Carreno, E. M., IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/184753
Resumo: The magnitude and geographic location of electricity demand in the planning horizon are vital pieces of information for power distribution companies in planning future network expansion and operation. Such information is often obtained through spatial load forecasting. Several methods have been developed using different data sources as inputs, depending on their availability; however, many of the advanced spatial load forecasting methods have not yet been widely used because of the size, variety, and availability of the data required. This paper presents a review of the different spatial load forecasting techniques developed in the last 10 years, focusing particularly on the evolution of the required input data, as well as some insights on how current and future technologies could be used to improve spatial load forecasting practices.
id UNSP_17a3bd088676c4d4f5a74b91e02fede8
oai_identifier_str oai:repositorio.unesp.br:11449/184753
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Data Issues in Spatial Electric Load ForecastingExpansion planning of distribution systemgeographic information systempower distribution systemspatial load forecastingThe magnitude and geographic location of electricity demand in the planning horizon are vital pieces of information for power distribution companies in planning future network expansion and operation. Such information is often obtained through spatial load forecasting. Several methods have been developed using different data sources as inputs, depending on their availability; however, many of the advanced spatial load forecasting methods have not yet been widely used because of the size, variety, and availability of the data required. This paper presents a review of the different spatial load forecasting techniques developed in the last 10 years, focusing particularly on the evolution of the required input data, as well as some insights on how current and future technologies could be used to improve spatial load forecasting practices.Univ State Sao Paulo, UNESP, Dept Elect Engn, Ilha Solteira, BrazilUniv State Sao Paulo, UNESP, Dept Elect Engn, Ilha Solteira, BrazilIeeeUniversidade Estadual Paulista (Unesp)Melo, J. D. [UNESP]Padilha-Feltrin, A. [UNESP]Carreno, E. M.IEEE2019-10-04T12:29:44Z2019-10-04T12:29:44Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject52014 Ieee Pes General Meeting - Conference & Exposition. New York: Ieee, 5 p., 2014.1944-9925http://hdl.handle.net/11449/184753WOS:000349551505030Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2014 Ieee Pes General Meeting - Conference & Expositioninfo:eu-repo/semantics/openAccess2024-07-04T19:11:49Zoai:repositorio.unesp.br:11449/184753Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:49:21.705329Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Data Issues in Spatial Electric Load Forecasting
title Data Issues in Spatial Electric Load Forecasting
spellingShingle Data Issues in Spatial Electric Load Forecasting
Melo, J. D. [UNESP]
Expansion planning of distribution system
geographic information system
power distribution system
spatial load forecasting
title_short Data Issues in Spatial Electric Load Forecasting
title_full Data Issues in Spatial Electric Load Forecasting
title_fullStr Data Issues in Spatial Electric Load Forecasting
title_full_unstemmed Data Issues in Spatial Electric Load Forecasting
title_sort Data Issues in Spatial Electric Load Forecasting
author Melo, J. D. [UNESP]
author_facet Melo, J. D. [UNESP]
Padilha-Feltrin, A. [UNESP]
Carreno, E. M.
IEEE
author_role author
author2 Padilha-Feltrin, A. [UNESP]
Carreno, E. M.
IEEE
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Melo, J. D. [UNESP]
Padilha-Feltrin, A. [UNESP]
Carreno, E. M.
IEEE
dc.subject.por.fl_str_mv Expansion planning of distribution system
geographic information system
power distribution system
spatial load forecasting
topic Expansion planning of distribution system
geographic information system
power distribution system
spatial load forecasting
description The magnitude and geographic location of electricity demand in the planning horizon are vital pieces of information for power distribution companies in planning future network expansion and operation. Such information is often obtained through spatial load forecasting. Several methods have been developed using different data sources as inputs, depending on their availability; however, many of the advanced spatial load forecasting methods have not yet been widely used because of the size, variety, and availability of the data required. This paper presents a review of the different spatial load forecasting techniques developed in the last 10 years, focusing particularly on the evolution of the required input data, as well as some insights on how current and future technologies could be used to improve spatial load forecasting practices.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2019-10-04T12:29:44Z
2019-10-04T12:29:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2014 Ieee Pes General Meeting - Conference & Exposition. New York: Ieee, 5 p., 2014.
1944-9925
http://hdl.handle.net/11449/184753
WOS:000349551505030
identifier_str_mv 2014 Ieee Pes General Meeting - Conference & Exposition. New York: Ieee, 5 p., 2014.
1944-9925
WOS:000349551505030
url http://hdl.handle.net/11449/184753
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2014 Ieee Pes General Meeting - Conference & Exposition
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129254334922752