Spatial electric load forecasting using an evolutionary heuristic

Detalhes bibliográficos
Autor(a) principal: Carreno, E. M. [UNESP]
Data de Publicação: 2010
Outros Autores: Padilha-Feltrin, A. [UNESP], Leal, A. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S0103-17592010000400005
http://hdl.handle.net/11449/29084
Resumo: A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.
id UNSP_de827be25bd7c0cffd8273bafba7fcb8
oai_identifier_str oai:repositorio.unesp.br:11449/29084
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Spatial electric load forecasting using an evolutionary heuristicSpatial electric load forecastingland useknowledge extractiondistribution planningA method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.UNESP Faculdade de Engenharia de Ilha SolteiraELUCID SOLUTIONSUNESP Faculdade de Engenharia de Ilha SolteiraSociedade Brasileira de AutomáticaUniversidade Estadual Paulista (Unesp)ELUCID SOLUTIONSCarreno, E. M. [UNESP]Padilha-Feltrin, A. [UNESP]Leal, A. G.2014-05-20T15:14:11Z2014-05-20T15:14:11Z2010-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article379-388application/pdfhttp://dx.doi.org/10.1590/S0103-17592010000400005Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010.0103-1759http://hdl.handle.net/11449/2908410.1590/S0103-17592010000400005S0103-17592010000400005S0103-17592010000400005.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSba: Controle & Automação Sociedade Brasileira de Automaticainfo:eu-repo/semantics/openAccess2024-07-04T19:06:14Zoai:repositorio.unesp.br:11449/29084Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:04:36.776013Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Spatial electric load forecasting using an evolutionary heuristic
title Spatial electric load forecasting using an evolutionary heuristic
spellingShingle Spatial electric load forecasting using an evolutionary heuristic
Carreno, E. M. [UNESP]
Spatial electric load forecasting
land use
knowledge extraction
distribution planning
title_short Spatial electric load forecasting using an evolutionary heuristic
title_full Spatial electric load forecasting using an evolutionary heuristic
title_fullStr Spatial electric load forecasting using an evolutionary heuristic
title_full_unstemmed Spatial electric load forecasting using an evolutionary heuristic
title_sort Spatial electric load forecasting using an evolutionary heuristic
author Carreno, E. M. [UNESP]
author_facet Carreno, E. M. [UNESP]
Padilha-Feltrin, A. [UNESP]
Leal, A. G.
author_role author
author2 Padilha-Feltrin, A. [UNESP]
Leal, A. G.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
ELUCID SOLUTIONS
dc.contributor.author.fl_str_mv Carreno, E. M. [UNESP]
Padilha-Feltrin, A. [UNESP]
Leal, A. G.
dc.subject.por.fl_str_mv Spatial electric load forecasting
land use
knowledge extraction
distribution planning
topic Spatial electric load forecasting
land use
knowledge extraction
distribution planning
description A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.
publishDate 2010
dc.date.none.fl_str_mv 2010-08-01
2014-05-20T15:14:11Z
2014-05-20T15:14:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S0103-17592010000400005
Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010.
0103-1759
http://hdl.handle.net/11449/29084
10.1590/S0103-17592010000400005
S0103-17592010000400005
S0103-17592010000400005.pdf
url http://dx.doi.org/10.1590/S0103-17592010000400005
http://hdl.handle.net/11449/29084
identifier_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010.
0103-1759
10.1590/S0103-17592010000400005
S0103-17592010000400005
S0103-17592010000400005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 379-388
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Automática
publisher.none.fl_str_mv Sociedade Brasileira de Automática
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128890711834624