Spatial electric load forecasting using an evolutionary heuristic
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0103-17592010000400005 http://hdl.handle.net/11449/29084 |
Resumo: | A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability. |
id |
UNSP_de827be25bd7c0cffd8273bafba7fcb8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/29084 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Spatial electric load forecasting using an evolutionary heuristicSpatial electric load forecastingland useknowledge extractiondistribution planningA method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.UNESP Faculdade de Engenharia de Ilha SolteiraELUCID SOLUTIONSUNESP Faculdade de Engenharia de Ilha SolteiraSociedade Brasileira de AutomáticaUniversidade Estadual Paulista (Unesp)ELUCID SOLUTIONSCarreno, E. M. [UNESP]Padilha-Feltrin, A. [UNESP]Leal, A. G.2014-05-20T15:14:11Z2014-05-20T15:14:11Z2010-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article379-388application/pdfhttp://dx.doi.org/10.1590/S0103-17592010000400005Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010.0103-1759http://hdl.handle.net/11449/2908410.1590/S0103-17592010000400005S0103-17592010000400005S0103-17592010000400005.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSba: Controle & Automação Sociedade Brasileira de Automaticainfo:eu-repo/semantics/openAccess2024-07-04T19:06:14Zoai:repositorio.unesp.br:11449/29084Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:04:36.776013Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Spatial electric load forecasting using an evolutionary heuristic |
title |
Spatial electric load forecasting using an evolutionary heuristic |
spellingShingle |
Spatial electric load forecasting using an evolutionary heuristic Carreno, E. M. [UNESP] Spatial electric load forecasting land use knowledge extraction distribution planning |
title_short |
Spatial electric load forecasting using an evolutionary heuristic |
title_full |
Spatial electric load forecasting using an evolutionary heuristic |
title_fullStr |
Spatial electric load forecasting using an evolutionary heuristic |
title_full_unstemmed |
Spatial electric load forecasting using an evolutionary heuristic |
title_sort |
Spatial electric load forecasting using an evolutionary heuristic |
author |
Carreno, E. M. [UNESP] |
author_facet |
Carreno, E. M. [UNESP] Padilha-Feltrin, A. [UNESP] Leal, A. G. |
author_role |
author |
author2 |
Padilha-Feltrin, A. [UNESP] Leal, A. G. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) ELUCID SOLUTIONS |
dc.contributor.author.fl_str_mv |
Carreno, E. M. [UNESP] Padilha-Feltrin, A. [UNESP] Leal, A. G. |
dc.subject.por.fl_str_mv |
Spatial electric load forecasting land use knowledge extraction distribution planning |
topic |
Spatial electric load forecasting land use knowledge extraction distribution planning |
description |
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08-01 2014-05-20T15:14:11Z 2014-05-20T15:14:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0103-17592010000400005 Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010. 0103-1759 http://hdl.handle.net/11449/29084 10.1590/S0103-17592010000400005 S0103-17592010000400005 S0103-17592010000400005.pdf |
url |
http://dx.doi.org/10.1590/S0103-17592010000400005 http://hdl.handle.net/11449/29084 |
identifier_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 21, n. 4, p. 379-388, 2010. 0103-1759 10.1590/S0103-17592010000400005 S0103-17592010000400005 S0103-17592010000400005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
379-388 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128890711834624 |