An Unmanned Aerial Vehicles Journey into the World of Sugarcane

Detalhes bibliográficos
Autor(a) principal: Barbosa Júnior, Marcelo Rodrigues
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: https://hdl.handle.net/11449/255529
http://lattes.cnpq.br/7949757920964231
https://orcid.org/0000-0002-7207-2156
Resumo: In this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies.
id UNSP_199b0e7401655f056521f037c55c3a01
oai_identifier_str oai:repositorio.unesp.br:11449/255529
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An Unmanned Aerial Vehicles Journey into the World of SugarcaneUma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-AçúcarUnmanned Aerial VehiclesSugarcaneRemote SensingDigital AgricultureMachine LearningIn this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies.Nesta Tese de Doutorado investigamos o uso de veículos aéreos não tripulados (VANTs) na produção de cana-de-açúcar, enfatizando sua crescente importância na agricultura e o papel estratégico da cana-de-açúcar. A pesquisa inclui uma revisão integrativa das aplicações de VANTs de 2016 a 2021, analisando as estratégias de monitoramento e gerenciamento e avaliando as contribuições de diversos países e instituições. Consequentemente, apresentamos um novo protocolo para determinar horários ideais de voo de VANT para discriminar cultivares de cana-de-açúcar durante estádio inicial de desenvolvimento das plantas usando imagens multiespectrais e índices de vegetação. Além disso, usamos algoritmos de machine learning (ML) combinados com imagens de VANT para prever o teor de açúcar da cana-de-açúcar, oferecendo um método não invasivo e escalável superior às técnicas tradicionais. Essa abordagem também foi ampliada com a incorporação de um sensor ativo proximal, melhorando os recursos de predição para matérias-primas de bioetanol e promovendo o uso sustentável da terra ao considerar todos os componentes da planta como recursos valiosos. O capítulo final resume o progresso das aplicações da tecnologia de VANT na cana-de-açúcar, discute a utilidade e a capacidade de transferência dos métodos desenvolvidos e descreve as futuras direções de pesquisa para avançar ainda mais nesse campo. Por fim, esta Tese de Doutorado oferece uma visão significativa da otimização da produção de cana-de-açúcar por meio da integração de tecnologias inovadoras.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)88887.610238/2021-002022/13992-0Universidade Estadual Paulista (Unesp)Silva, Rouverson Pereira daZerbato, CristianoShiratsuchi, Luciano ShozoBarbosa Júnior, Marcelo Rodrigues2024-05-08T11:01:15Z2024-05-08T11:01:15Z2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024.https://hdl.handle.net/11449/255529http://lattes.cnpq.br/7949757920964231https://orcid.org/0000-0002-7207-2156enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-05-09T06:15:25Zoai:repositorio.unesp.br:11449/255529Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:11:18.308240Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An Unmanned Aerial Vehicles Journey into the World of Sugarcane
Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar
title An Unmanned Aerial Vehicles Journey into the World of Sugarcane
spellingShingle An Unmanned Aerial Vehicles Journey into the World of Sugarcane
Barbosa Júnior, Marcelo Rodrigues
Unmanned Aerial Vehicles
Sugarcane
Remote Sensing
Digital Agriculture
Machine Learning
title_short An Unmanned Aerial Vehicles Journey into the World of Sugarcane
title_full An Unmanned Aerial Vehicles Journey into the World of Sugarcane
title_fullStr An Unmanned Aerial Vehicles Journey into the World of Sugarcane
title_full_unstemmed An Unmanned Aerial Vehicles Journey into the World of Sugarcane
title_sort An Unmanned Aerial Vehicles Journey into the World of Sugarcane
author Barbosa Júnior, Marcelo Rodrigues
author_facet Barbosa Júnior, Marcelo Rodrigues
author_role author
dc.contributor.none.fl_str_mv Silva, Rouverson Pereira da
Zerbato, Cristiano
Shiratsuchi, Luciano Shozo
dc.contributor.author.fl_str_mv Barbosa Júnior, Marcelo Rodrigues
dc.subject.por.fl_str_mv Unmanned Aerial Vehicles
Sugarcane
Remote Sensing
Digital Agriculture
Machine Learning
topic Unmanned Aerial Vehicles
Sugarcane
Remote Sensing
Digital Agriculture
Machine Learning
description In this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-08T11:01:15Z
2024-05-08T11:01:15Z
2024-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024.
https://hdl.handle.net/11449/255529
http://lattes.cnpq.br/7949757920964231
https://orcid.org/0000-0002-7207-2156
identifier_str_mv BARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024.
url https://hdl.handle.net/11449/255529
http://lattes.cnpq.br/7949757920964231
https://orcid.org/0000-0002-7207-2156
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129295616311296