An Unmanned Aerial Vehicles Journey into the World of Sugarcane
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | https://hdl.handle.net/11449/255529 http://lattes.cnpq.br/7949757920964231 https://orcid.org/0000-0002-7207-2156 |
Resumo: | In this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies. |
id |
UNSP_199b0e7401655f056521f037c55c3a01 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/255529 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An Unmanned Aerial Vehicles Journey into the World of SugarcaneUma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-AçúcarUnmanned Aerial VehiclesSugarcaneRemote SensingDigital AgricultureMachine LearningIn this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies.Nesta Tese de Doutorado investigamos o uso de veículos aéreos não tripulados (VANTs) na produção de cana-de-açúcar, enfatizando sua crescente importância na agricultura e o papel estratégico da cana-de-açúcar. A pesquisa inclui uma revisão integrativa das aplicações de VANTs de 2016 a 2021, analisando as estratégias de monitoramento e gerenciamento e avaliando as contribuições de diversos países e instituições. Consequentemente, apresentamos um novo protocolo para determinar horários ideais de voo de VANT para discriminar cultivares de cana-de-açúcar durante estádio inicial de desenvolvimento das plantas usando imagens multiespectrais e índices de vegetação. Além disso, usamos algoritmos de machine learning (ML) combinados com imagens de VANT para prever o teor de açúcar da cana-de-açúcar, oferecendo um método não invasivo e escalável superior às técnicas tradicionais. Essa abordagem também foi ampliada com a incorporação de um sensor ativo proximal, melhorando os recursos de predição para matérias-primas de bioetanol e promovendo o uso sustentável da terra ao considerar todos os componentes da planta como recursos valiosos. O capítulo final resume o progresso das aplicações da tecnologia de VANT na cana-de-açúcar, discute a utilidade e a capacidade de transferência dos métodos desenvolvidos e descreve as futuras direções de pesquisa para avançar ainda mais nesse campo. Por fim, esta Tese de Doutorado oferece uma visão significativa da otimização da produção de cana-de-açúcar por meio da integração de tecnologias inovadoras.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)88887.610238/2021-002022/13992-0Universidade Estadual Paulista (Unesp)Silva, Rouverson Pereira daZerbato, CristianoShiratsuchi, Luciano ShozoBarbosa Júnior, Marcelo Rodrigues2024-05-08T11:01:15Z2024-05-08T11:01:15Z2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024.https://hdl.handle.net/11449/255529http://lattes.cnpq.br/7949757920964231https://orcid.org/0000-0002-7207-2156enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-05-09T06:15:25Zoai:repositorio.unesp.br:11449/255529Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:11:18.308240Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar |
title |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
spellingShingle |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane Barbosa Júnior, Marcelo Rodrigues Unmanned Aerial Vehicles Sugarcane Remote Sensing Digital Agriculture Machine Learning |
title_short |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
title_full |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
title_fullStr |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
title_full_unstemmed |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
title_sort |
An Unmanned Aerial Vehicles Journey into the World of Sugarcane |
author |
Barbosa Júnior, Marcelo Rodrigues |
author_facet |
Barbosa Júnior, Marcelo Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Rouverson Pereira da Zerbato, Cristiano Shiratsuchi, Luciano Shozo |
dc.contributor.author.fl_str_mv |
Barbosa Júnior, Marcelo Rodrigues |
dc.subject.por.fl_str_mv |
Unmanned Aerial Vehicles Sugarcane Remote Sensing Digital Agriculture Machine Learning |
topic |
Unmanned Aerial Vehicles Sugarcane Remote Sensing Digital Agriculture Machine Learning |
description |
In this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-08T11:01:15Z 2024-05-08T11:01:15Z 2024-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024. https://hdl.handle.net/11449/255529 http://lattes.cnpq.br/7949757920964231 https://orcid.org/0000-0002-7207-2156 |
identifier_str_mv |
BARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024. |
url |
https://hdl.handle.net/11449/255529 http://lattes.cnpq.br/7949757920964231 https://orcid.org/0000-0002-7207-2156 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129295616311296 |