A global view on how local muscular fatigue affects human performance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1073/pnas.2007579117 http://hdl.handle.net/11449/209447 |
Resumo: | There is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations. |
id |
UNSP_199c76bbfa1318e4962559530d6a262b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209447 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A global view on how local muscular fatigue affects human performanceartificial neural networkself-organizing feature mapsexercisefatigueThere is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Sao Paulo, Sch Arts Sci & Humanities, Lab Phys Act Sci, BR-03828000 Sao Paulo, BrazilUniv Porto, Fac Sport, Ctr Res Educ Innovat & Intervent Sport, P-4200450 Porto, PortugalUniv Porto, Porto Biomech Lab, P-4200450 Porto, PortugalSao Paulo State Univ, Dept Phys Educ, BR-13506692 Rio Claro, BrazilUniv Sao Paulo, Sch Arts Sci & Humanities, Exercise Psychophysiol Res Grp, BR-03828000 Sao Paulo, BrazilSao Paulo State Univ, Dept Phys Educ, BR-13506692 Rio Claro, BrazilCAPES: 88882.315726/2019-01Natl Acad SciencesUniversidade de São Paulo (USP)Univ PortoUniversidade Estadual Paulista (Unesp)Goethel, Marcio F.Goncalves, Mauro [UNESP]Brietzke, CayqueCardozo, Adalgiso C. [UNESP]Vilas-Boas, Joao P.Ervilha, Ulysses F.2021-06-25T12:18:58Z2021-06-25T12:18:58Z2020-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19866-19872http://dx.doi.org/10.1073/pnas.2007579117Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020.0027-8424http://hdl.handle.net/11449/20944710.1073/pnas.2007579117WOS:000567818900015Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The National Academy Of Sciences Of The United States Of Americainfo:eu-repo/semantics/openAccess2021-10-23T19:28:12Zoai:repositorio.unesp.br:11449/209447Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:21:39.114132Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A global view on how local muscular fatigue affects human performance |
title |
A global view on how local muscular fatigue affects human performance |
spellingShingle |
A global view on how local muscular fatigue affects human performance Goethel, Marcio F. artificial neural network self-organizing feature maps exercise fatigue |
title_short |
A global view on how local muscular fatigue affects human performance |
title_full |
A global view on how local muscular fatigue affects human performance |
title_fullStr |
A global view on how local muscular fatigue affects human performance |
title_full_unstemmed |
A global view on how local muscular fatigue affects human performance |
title_sort |
A global view on how local muscular fatigue affects human performance |
author |
Goethel, Marcio F. |
author_facet |
Goethel, Marcio F. Goncalves, Mauro [UNESP] Brietzke, Cayque Cardozo, Adalgiso C. [UNESP] Vilas-Boas, Joao P. Ervilha, Ulysses F. |
author_role |
author |
author2 |
Goncalves, Mauro [UNESP] Brietzke, Cayque Cardozo, Adalgiso C. [UNESP] Vilas-Boas, Joao P. Ervilha, Ulysses F. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Univ Porto Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Goethel, Marcio F. Goncalves, Mauro [UNESP] Brietzke, Cayque Cardozo, Adalgiso C. [UNESP] Vilas-Boas, Joao P. Ervilha, Ulysses F. |
dc.subject.por.fl_str_mv |
artificial neural network self-organizing feature maps exercise fatigue |
topic |
artificial neural network self-organizing feature maps exercise fatigue |
description |
There is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-18 2021-06-25T12:18:58Z 2021-06-25T12:18:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1073/pnas.2007579117 Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020. 0027-8424 http://hdl.handle.net/11449/209447 10.1073/pnas.2007579117 WOS:000567818900015 |
url |
http://dx.doi.org/10.1073/pnas.2007579117 http://hdl.handle.net/11449/209447 |
identifier_str_mv |
Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020. 0027-8424 10.1073/pnas.2007579117 WOS:000567818900015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The National Academy Of Sciences Of The United States Of America |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
19866-19872 |
dc.publisher.none.fl_str_mv |
Natl Acad Sciences |
publisher.none.fl_str_mv |
Natl Acad Sciences |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128924537847808 |