A global view on how local muscular fatigue affects human performance

Detalhes bibliográficos
Autor(a) principal: Goethel, Marcio F.
Data de Publicação: 2020
Outros Autores: Goncalves, Mauro [UNESP], Brietzke, Cayque, Cardozo, Adalgiso C. [UNESP], Vilas-Boas, Joao P., Ervilha, Ulysses F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1073/pnas.2007579117
http://hdl.handle.net/11449/209447
Resumo: There is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations.
id UNSP_199c76bbfa1318e4962559530d6a262b
oai_identifier_str oai:repositorio.unesp.br:11449/209447
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A global view on how local muscular fatigue affects human performanceartificial neural networkself-organizing feature mapsexercisefatigueThere is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Sao Paulo, Sch Arts Sci & Humanities, Lab Phys Act Sci, BR-03828000 Sao Paulo, BrazilUniv Porto, Fac Sport, Ctr Res Educ Innovat & Intervent Sport, P-4200450 Porto, PortugalUniv Porto, Porto Biomech Lab, P-4200450 Porto, PortugalSao Paulo State Univ, Dept Phys Educ, BR-13506692 Rio Claro, BrazilUniv Sao Paulo, Sch Arts Sci & Humanities, Exercise Psychophysiol Res Grp, BR-03828000 Sao Paulo, BrazilSao Paulo State Univ, Dept Phys Educ, BR-13506692 Rio Claro, BrazilCAPES: 88882.315726/2019-01Natl Acad SciencesUniversidade de São Paulo (USP)Univ PortoUniversidade Estadual Paulista (Unesp)Goethel, Marcio F.Goncalves, Mauro [UNESP]Brietzke, CayqueCardozo, Adalgiso C. [UNESP]Vilas-Boas, Joao P.Ervilha, Ulysses F.2021-06-25T12:18:58Z2021-06-25T12:18:58Z2020-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19866-19872http://dx.doi.org/10.1073/pnas.2007579117Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020.0027-8424http://hdl.handle.net/11449/20944710.1073/pnas.2007579117WOS:000567818900015Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The National Academy Of Sciences Of The United States Of Americainfo:eu-repo/semantics/openAccess2021-10-23T19:28:12Zoai:repositorio.unesp.br:11449/209447Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:21:39.114132Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A global view on how local muscular fatigue affects human performance
title A global view on how local muscular fatigue affects human performance
spellingShingle A global view on how local muscular fatigue affects human performance
Goethel, Marcio F.
artificial neural network
self-organizing feature maps
exercise
fatigue
title_short A global view on how local muscular fatigue affects human performance
title_full A global view on how local muscular fatigue affects human performance
title_fullStr A global view on how local muscular fatigue affects human performance
title_full_unstemmed A global view on how local muscular fatigue affects human performance
title_sort A global view on how local muscular fatigue affects human performance
author Goethel, Marcio F.
author_facet Goethel, Marcio F.
Goncalves, Mauro [UNESP]
Brietzke, Cayque
Cardozo, Adalgiso C. [UNESP]
Vilas-Boas, Joao P.
Ervilha, Ulysses F.
author_role author
author2 Goncalves, Mauro [UNESP]
Brietzke, Cayque
Cardozo, Adalgiso C. [UNESP]
Vilas-Boas, Joao P.
Ervilha, Ulysses F.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Univ Porto
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Goethel, Marcio F.
Goncalves, Mauro [UNESP]
Brietzke, Cayque
Cardozo, Adalgiso C. [UNESP]
Vilas-Boas, Joao P.
Ervilha, Ulysses F.
dc.subject.por.fl_str_mv artificial neural network
self-organizing feature maps
exercise
fatigue
topic artificial neural network
self-organizing feature maps
exercise
fatigue
description There is a growing interest in scientific literature on identifying how and to what extent interventions applied to a specific body region influence the responses and functions of other seemingly unrelated body regions. To investigate such a construct, it is necessary to have a global multivariate model that considers the interaction among several variables that are involved in a specific task and how a local and acute impairment affects the behavior of the output of such a model. We developed an artificial neural network (ANN)-based multivariate model by using parameters of motor skills obtained from kinematic, postural control, joint torque, and proprioception variables to assess the local fatigue effects of the abductor hip muscles on the functional profile during a single-leg drop landing and a squatting task. Findings suggest that hip abductor muscles' local fatigue produces a significant effect on a general functional profile, built on different control systems. We propose that expanded and global approaches, such as the one used in this study, have great applicability and have the potential to serve as a tool that guaran-tees ecological validity of future investigations.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-18
2021-06-25T12:18:58Z
2021-06-25T12:18:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1073/pnas.2007579117
Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020.
0027-8424
http://hdl.handle.net/11449/209447
10.1073/pnas.2007579117
WOS:000567818900015
url http://dx.doi.org/10.1073/pnas.2007579117
http://hdl.handle.net/11449/209447
identifier_str_mv Proceedings Of The National Academy Of Sciences Of The United States Of America. Washington: Natl Acad Sciences, v. 117, n. 33, p. 19866-19872, 2020.
0027-8424
10.1073/pnas.2007579117
WOS:000567818900015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings Of The National Academy Of Sciences Of The United States Of America
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 19866-19872
dc.publisher.none.fl_str_mv Natl Acad Sciences
publisher.none.fl_str_mv Natl Acad Sciences
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128924537847808